File size: 13,466 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# --------------------------------------------------------
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
"""
    Modified from https://github.com/facebookresearch/fairseq/blob/main/fairseq/modules/transformer_layer.py
    https://github.com/microsoft/SpeechT5/blob/main/Speech2C/speech2c/models/modules/transformer_decoder_layer.py
"""

from typing import Dict, List, Optional

import torch
from torch import Tensor
from fairseq.modules import LayerNorm
from speechlm.modules.multihead_attention import MultiheadAttention
from fairseq.modules.transformer_layer import TransformerEncoderLayerBase as FairseqTransformerEncoderLayerBase
from fairseq.modules.transformer_layer import TransformerDecoderLayerBase as FairseqTransformerDecoderLayerBase


class TransformerEncoderLayerBase(FairseqTransformerEncoderLayerBase):
    """Encoder layer block.

    In the original paper each operation (multi-head attention or FFN) is
    postprocessed with: `dropout -> add residual -> layernorm`. In the
    tensor2tensor code they suggest that learning is more robust when
    preprocessing each layer with layernorm and postprocessing with:
    `dropout -> add residual`. We default to the approach in the paper, but the
    tensor2tensor approach can be enabled by setting
    *cfg.encoder.normalize_before* to ``True``.

    Args:
        args (argparse.Namespace): parsed command-line arguments
    """

    def __init__(self, cfg, has_relative_attention_bias=False, scaling_for_att=1.0):
        self.scaling_for_att = scaling_for_att
        super().__init__(cfg)
        if has_relative_attention_bias:
            self.norm_k = LayerNorm(self.embed_dim // cfg.encoder.attention_heads)

    def build_self_attention(self, embed_dim, cfg, scaling_for_att=1.0):
        return MultiheadAttention(
            embed_dim,
            cfg.encoder.attention_heads,
            dropout=cfg.attention_dropout,
            self_attention=True,
            q_noise=self.quant_noise,
            qn_block_size=self.quant_noise_block_size,
            scaling_for_att=self.scaling_for_att,
        )

    def forward(
        self,
        x,
        encoder_padding_mask: Optional[Tensor],
        attn_mask: Optional[Tensor] = None,
        pos_bias=None,
    ):
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor): binary ByteTensor of shape
                `(batch, seq_len)` where padding elements are indicated by ``1``.
            attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`,
                where `tgt_len` is the length of output and `src_len` is the
                length of input, though here both are equal to `seq_len`.
                `attn_mask[tgt_i, src_j] = 1` means that when calculating the
                embedding for `tgt_i`, we exclude (mask out) `src_j`. This is
                useful for strided self-attention.

        Returns:
            encoded output of shape `(seq_len, batch, embed_dim)`
        """
        # anything in original attn_mask = 1, becomes -1e8
        # anything in original attn_mask = 0, becomes 0
        # Note that we cannot use -inf here, because at some edge cases,
        # the attention weight (before softmax) for some padded element in query
        # will become -inf, which results in NaN in model parameters
        if attn_mask is not None:
            attn_mask = attn_mask.masked_fill(
                attn_mask.to(torch.bool), -1e8 if x.dtype == torch.float32 else -1e4
            )

        residual = x
        if self.normalize_before:
            x = self.self_attn_layer_norm(x)
            if pos_bias is not None:
                pos_bias = self.norm_k(pos_bias)
        x, _ = self.self_attn(
            query=x,
            key=x,
            value=x,
            key_padding_mask=encoder_padding_mask,
            need_weights=False,
            attn_mask=attn_mask,
            position_bias=pos_bias,
        )
        x = self.dropout_module(x)
        x = self.residual_connection(x, residual)
        if not self.normalize_before:
            x = self.self_attn_layer_norm(x)

        residual = x
        if self.normalize_before:
            x = self.final_layer_norm(x)
        x = self.activation_fn(self.fc1(x))
        x = self.activation_dropout_module(x)
        x = self.fc2(x)
        x = self.dropout_module(x)
        x = self.residual_connection(x, residual)
        if not self.normalize_before:
            x = self.final_layer_norm(x)
        return x



class TransformerDecoderLayerBase(FairseqTransformerDecoderLayerBase):
    """Decoder layer block.

    In the original paper each operation (multi-head attention, encoder
    attention or FFN) is postprocessed with: `dropout -> add residual ->
    layernorm`. In the tensor2tensor code they suggest that learning is more
    robust when preprocessing each layer with layernorm and postprocessing with:
    `dropout -> add residual`. We default to the approach in the paper, but the
    tensor2tensor approach can be enabled by setting
    *cfg.decoder.normalize_before* to ``True``.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """

    def __init__(
        self, cfg, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, has_relative_attention_bias=False, scaling_for_att=1.0,
    ):
        self.scaling_for_att = scaling_for_att
        super().__init__(cfg,
            no_encoder_attn,
            add_bias_kv,
            add_zero_attn,
        )

        if has_relative_attention_bias:
            self.norm_k = LayerNorm(self.embed_dim // cfg.decoder.attention_heads)

    def build_self_attention(
        self, embed_dim, cfg, add_bias_kv=False, add_zero_attn=False
    ):
        return MultiheadAttention(
            embed_dim,
            cfg.decoder.attention_heads,
            dropout=cfg.attention_dropout,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
            self_attention=not cfg.cross_self_attention,
            q_noise=self.quant_noise,
            qn_block_size=self.quant_noise_block_size,
            scaling_for_att=self.scaling_for_att,
        )

    def build_encoder_attention(self, embed_dim, cfg):
        return MultiheadAttention(
            embed_dim,
            cfg.decoder.attention_heads,
            kdim=cfg.encoder.embed_dim,
            vdim=cfg.encoder.embed_dim,
            dropout=cfg.attention_dropout,
            encoder_decoder_attention=True,
            q_noise=self.quant_noise,
            qn_block_size=self.quant_noise_block_size,
            scaling_for_att=self.scaling_for_att,
        )

    def forward(
        self,
        x,
        encoder_out: Optional[torch.Tensor] = None,
        encoder_padding_mask: Optional[torch.Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        prev_self_attn_state: Optional[List[torch.Tensor]] = None,
        prev_attn_state: Optional[List[torch.Tensor]] = None,
        self_attn_mask: Optional[torch.Tensor] = None,
        self_attn_padding_mask: Optional[torch.Tensor] = None,
        need_attn: bool = False,
        need_head_weights: bool = False,
        pos_bias=None,
    ):
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor, optional): binary
                ByteTensor of shape `(batch, src_len)` where padding
                elements are indicated by ``1``.
            need_attn (bool, optional): return attention weights
            need_head_weights (bool, optional): return attention weights
                for each head (default: return average over heads).

        Returns:
            encoded output of shape `(seq_len, batch, embed_dim)`
        """
        if need_head_weights:
            need_attn = True

        residual = x
        if self.normalize_before:
            x = self.self_attn_layer_norm(x)
            if pos_bias is not None:
                pos_bias = self.norm_k(pos_bias)
        if prev_self_attn_state is not None:
            prev_key, prev_value = prev_self_attn_state[:2]
            saved_state: Dict[str, Optional[Tensor]] = {
                "prev_key": prev_key,
                "prev_value": prev_value,
            }
            if len(prev_self_attn_state) >= 3:
                saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
            assert incremental_state is not None
            self.self_attn._set_input_buffer(incremental_state, saved_state)
        _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
        if self.cross_self_attention and not (
            incremental_state is not None
            and _self_attn_input_buffer is not None
            and "prev_key" in _self_attn_input_buffer
        ):
            if self_attn_mask is not None:
                assert encoder_out is not None
                self_attn_mask = torch.cat(
                    (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
                )
            if self_attn_padding_mask is not None:
                if encoder_padding_mask is None:
                    assert encoder_out is not None
                    encoder_padding_mask = self_attn_padding_mask.new_zeros(
                        encoder_out.size(1), encoder_out.size(0)
                    )
                self_attn_padding_mask = torch.cat(
                    (encoder_padding_mask, self_attn_padding_mask), dim=1
                )
            assert encoder_out is not None
            y = torch.cat((encoder_out, x), dim=0)
        else:
            y = x

        x, attn = self.self_attn(
            query=x,
            key=y,
            value=y,
            key_padding_mask=self_attn_padding_mask,
            incremental_state=incremental_state,
            need_weights=False,
            attn_mask=self_attn_mask,
            position_bias=pos_bias,
        )
        if self.c_attn is not None:
            tgt_len, bsz = x.size(0), x.size(1)
            x = x.view(tgt_len, bsz, self.nh, self.head_dim)
            x = torch.einsum("tbhd,h->tbhd", x, self.c_attn)
            x = x.reshape(tgt_len, bsz, self.embed_dim)
        if self.attn_ln is not None:
            x = self.attn_ln(x)
        x = self.dropout_module(x)
        x = self.residual_connection(x, residual)
        if not self.normalize_before:
            x = self.self_attn_layer_norm(x)

        if self.encoder_attn is not None and encoder_out is not None:
            residual = x
            if self.normalize_before:
                x = self.encoder_attn_layer_norm(x)
            if prev_attn_state is not None:
                prev_key, prev_value = prev_attn_state[:2]
                saved_state: Dict[str, Optional[Tensor]] = {
                    "prev_key": prev_key,
                    "prev_value": prev_value,
                }
                if len(prev_attn_state) >= 3:
                    saved_state["prev_key_padding_mask"] = prev_attn_state[2]
                assert incremental_state is not None
                self.encoder_attn._set_input_buffer(incremental_state, saved_state)

            x, attn = self.encoder_attn(
                query=x,
                key=encoder_out,
                value=encoder_out,
                key_padding_mask=encoder_padding_mask,
                incremental_state=incremental_state,
                static_kv=True,
                need_weights=need_attn or (not self.training and self.need_attn),
                need_head_weights=need_head_weights,
            )
            x = self.dropout_module(x)
            x = self.residual_connection(x, residual)
            if not self.normalize_before:
                x = self.encoder_attn_layer_norm(x)

        residual = x
        if self.normalize_before:
            x = self.final_layer_norm(x)

        x = self.activation_fn(self.fc1(x))
        x = self.activation_dropout_module(x)
        if self.ffn_layernorm is not None:
            x = self.ffn_layernorm(x)
        x = self.fc2(x)
        x = self.dropout_module(x)
        if self.w_resid is not None:
            residual = torch.mul(self.w_resid, residual)
        x = self.residual_connection(x, residual)
        if not self.normalize_before:
            x = self.final_layer_norm(x)
        if self.onnx_trace and incremental_state is not None:
            saved_state = self.self_attn._get_input_buffer(incremental_state)
            assert saved_state is not None
            if self_attn_padding_mask is not None:
                self_attn_state = [
                    saved_state["prev_key"],
                    saved_state["prev_value"],
                    saved_state["prev_key_padding_mask"],
                ]
            else:
                self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
            return x, attn, self_attn_state
        return x, attn, None

    def make_generation_fast_(self, need_attn: bool = False, **kwargs):
        self.need_attn = need_attn