Spaces:
Runtime error
Runtime error
File size: 14,876 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
#
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------
import logging
import math
import re
from dataclasses import dataclass, field
from typing import List, Optional
import numpy as np
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss
from fairseq.dataclass import FairseqDataclass
logger = logging.getLogger(__name__)
@dataclass
class HSTCriterionConfig(FairseqDataclass):
pred_masked_weight: float = field(
default=1.0,
metadata={"help": "weight for predictive loss for masked frames"},
)
pred_nomask_weight: float = field(
default=0.0,
metadata={"help": "weight for predictive loss for unmasked frames"},
)
loss_weights: Optional[List[float]] = field(
default=None,
metadata={"help": "weights for additional loss terms (not first one)"},
)
log_keys: List[str] = field(
default_factory=lambda: [],
metadata={"help": "output keys to log"},
)
text_ctc_weight: float = field(
default=0.1,
metadata={"help": "weights for text CTC Loss, loss will be (hubert_loss + dec_weight * CE_Loss + text_weight * (CE_Loss + CTC_loss))"},
)
text_mum_weight: float = field(
default=0.0,
metadata={"help": "masked unit modeling weight from the text end"},
)
report_accuracy: bool = field(
default=True,
metadata={"help": "report decoder accuracy metric"},
)
ignore_prefix_size: int = field(
default=0,
metadata={"help": "Ignore first N tokens"},
)
no_ctc_blank: bool = field(
default=False,
metadata={"help": "mask out the blank of ctc, only when dec_loss_type=ctc"},
)
@register_criterion("speechlm_criterion", dataclass=HSTCriterionConfig)
class SpeechLMCriterion(FairseqCriterion):
def __init__(
self,
task,
pred_masked_weight,
pred_nomask_weight,
loss_weights=None,
log_keys=None,
text_ctc_weight=0.1,
text_mum_weight=0,
report_accuracy=False,
ignore_prefix_size=0,
no_ctc_blank=False,
):
super().__init__(task)
self.pred_masked_weight = pred_masked_weight
self.pred_nomask_weight = pred_nomask_weight
self.loss_weights = loss_weights
self.log_keys = [] if log_keys is None else log_keys
self.text_ctc_weight = text_ctc_weight
self.text_mum_weight = text_mum_weight
self.report_accuracy = report_accuracy
self.ignore_prefix_size = ignore_prefix_size
self.no_ctc_blank = no_ctc_blank
self.padding_idx = task.dictionaries[0].pad()
self.eos_idx = task.dictionaries[0].eos()
self.blank_idx = task.dictionaries[0].bos()
def compute_hubert_loss(self, model, net_output, reduction, suffix=''):
loss = 0
sample_size = []
logging_output = {}
loss_m_list = []
logp_m_list = model.get_logits(net_output, True)
targ_m_list = model.get_targets(net_output, True)
assert self.pred_masked_weight == 0 or len(logp_m_list) > 0
for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)):
loss_m = F.cross_entropy(logp_m, targ_m, reduction=reduction)
loss_m_list.append(loss_m)
logging_output[f"loss_m_{i}{suffix}"] = loss_m.detach().item()
if self.pred_masked_weight > 0:
loss += self.pred_masked_weight * sum(loss_m_list)
sample_size.append(targ_m_list[0].numel())
loss_u_list = []
logp_u_list = model.get_logits(net_output, False)
targ_u_list = model.get_targets(net_output, False)
assert self.pred_nomask_weight == 0 or len(logp_u_list) > 0
for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)):
loss_u = F.cross_entropy(logp_u, targ_u, reduction=reduction)
loss_u_list.append(loss_u)
logging_output[f"loss_u_{i}{suffix}"] = loss_u.detach().item()
if self.pred_nomask_weight > 0:
loss += self.pred_nomask_weight * sum(loss_u_list)
sample_size.append(targ_u_list[0].numel())
sample_size = np.mean(sample_size)
def compute_correct(logits, targets):
if logits.numel() == 0:
return 0, 0
else:
assert logits.dim() > 1, logits.shape
max = logits.argmax(-1) == targets
min = logits.argmin(-1) == targets
both = max & min
corr = max.long().sum().item() - both.long().sum().item()
count = max.numel()
return corr, count
with torch.no_grad():
for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)):
corr_m, count_m = compute_correct(logp_m, targ_m)
logging_output[f"correct_m_{i}{suffix}"] = corr_m
logging_output[f"count_m_{i}{suffix}"] = count_m
for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)):
corr_u, count_u = compute_correct(logp_u, targ_u)
logging_output[f"correct_u_{i}{suffix}"] = corr_u
logging_output[f"count_u_{i}{suffix}"] = count_u
return loss, sample_size, logging_output
def forward(self, model, sample, reduce=True, log_pred=False):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
reduction = "sum" if reduce else "none"
if "net_input" in sample:
text_sample = None
else:
text_sample = sample.get("text_paired")
sample = sample.get("speech")
### 1. L_UMLM: do hubert forward and loss computation
sample["modality"] = "speech"
net_output = model(target_list=sample["target_list"], **sample["net_input"])
loss, sample_size, logging_output = self.compute_hubert_loss(
model,
net_output,
reduction,
)
if self.loss_weights is not None:
assert hasattr(model, "get_extra_losses")
extra_losses, names = model.get_extra_losses(net_output)
if torch.is_tensor(extra_losses):
extra_losses = [extra_losses]
names = [names]
if len(self.loss_weights) == 1 and len(extra_losses) != 1:
self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
assert len(extra_losses) == len(
self.loss_weights
), f"{len(extra_losses)}, {len(self.loss_weights)}"
for p, n, coef in zip(extra_losses, names, self.loss_weights):
if coef != 0 and p is not None:
p = coef * p.float() * sample_size
loss += p
logging_output[f"loss_{n}"] = p.item()
for lk in self.log_keys:
if lk in net_output:
logging_output[lk] = float((net_output[lk]))
### 2. do text forward and loss computation
if text_sample is not None:
text_sample["modality"] = "text"
## 2.1 re-loading "target_list", in default case, target_list = [src_tokens],
## while in case of using "unit-phone-char" structure, target_list will be [ref_tokens]
text_sample["net_input"]["target_list"] = [
text_sample.get("ref_tokens", text_sample["net_input"]["src_tokens"].clone()),
]
text_net_output = model(**text_sample["net_input"])
### 2.2 L_UMLM (text-end, not applied by default)
if self.text_mum_weight > 0:
loss_u2t, sample_size_u2t, logging_output_u2t = self.compute_hubert_loss(
model,
text_net_output,
reduction,
suffix="_u2t",
)
loss += self.text_mum_weight * loss_u2t * sample_size / sample_size_u2t
logging_output.update(logging_output_u2t)
### 2.3 L_UCTC
text_sample_size = text_sample["ntokens"]
if self.text_ctc_weight > 0:
text_ctc_loss = self.compute_ctc_loss(model, text_net_output, text_sample["target"], reduction=reduction)
loss += self.text_ctc_weight * text_ctc_loss * sample_size / text_sample_size
logging_output["text_ctc_loss"] = utils.item(text_ctc_loss)
logging_output["text_sample_size"] = text_sample_size
logging_output = {
"loss": utils.item(loss) if reduce else loss,
"ntokens": sample_size,
"nsentences": sample["id"].numel() + (text_sample["id"].numel() if text_sample is not None else 0),
"sample_size": sample_size,
**logging_output,
}
return loss, sample_size, logging_output
def compute_ctc_loss(self, model, net_output, target, reduction):
logits = net_output["encoder_out_ctc"][0] # (T, B, C) from the code-encoder
if self.no_ctc_blank:
## set prob of <blank> to -inf
logits = logits.float()
logits[:, :, self.blank_idx] = -1000000.0
lprobs = F.log_softmax(logits.float(), dim=-1)
encoder_padding_mask = net_output["encoder_padding_mask"][0]
non_padding_mask = ~encoder_padding_mask
input_lengths = non_padding_mask.long().sum(-1)
pad_mask = (target != self.padding_idx) & (target != self.eos_idx)
targets_flat = target.masked_select(pad_mask)
target_lengths = pad_mask.sum(-1)
with torch.backends.cudnn.flags(enabled=False):
loss = F.ctc_loss(
lprobs,
targets_flat,
input_lengths,
target_lengths,
blank=self.blank_idx,
reduction=reduction,
zero_infinity=True,
)
return loss
def compute_ce_loss(self, model, net_output, sample, reduce=True):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
loss, nll_loss = label_smoothed_nll_loss(
lprobs,
target,
self.eps,
ignore_index=self.padding_idx,
reduce=reduce,
)
return loss, nll_loss
def compute_accuracy(self, model, net_output, sample):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
mask = target.ne(self.padding_idx)
n_correct = torch.sum(
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
)
total = torch.sum(mask)
return n_correct, total
def get_lprobs_and_target(self, model, net_output, sample):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
if sample["modality"] == "speech":
target = sample["decoder_target"]
if self.ignore_prefix_size > 0:
if getattr(lprobs, "batch_first", False):
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
target = target[:, self.ignore_prefix_size :].contiguous()
else:
lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
target = target[self.ignore_prefix_size :, :].contiguous()
else:
target = sample["target"]
return lprobs.view(-1, lprobs.size(-1)), target.view(-1)
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training (copied from normal cross entropy)."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
else:
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
counts = {}
for lk in logging_outputs[0].keys():
if lk.startswith("count_"):
val = sum(log.get(lk, 0) for log in logging_outputs)
metrics.log_scalar(lk, val)
counts[lk] = val
for lk in logging_outputs[0].keys():
if lk.startswith("loss_"):
val = sum(log.get(lk, 0) for log in logging_outputs)
metrics.log_scalar(lk, val / sample_size / math.log(2), round=3)
elif lk.startswith("correct_"):
val = sum(log.get(lk, 0) for log in logging_outputs)
metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)])
if "text_sample_size" in logging_outputs[0]:
text_sample_size = sum(log.get("text_sample_size", 0) for log in logging_outputs)
for lk in logging_outputs[0].keys():
if lk.startswith("text_") and lk.endswith("_loss"):
val = sum(log.get(lk, 0) for log in logging_outputs)
metrics.log_scalar(lk, val / text_sample_size / math.log(2), round=3)
@staticmethod
def aggregate_logging_outputs(logging_outputs):
"""Aggregate logging outputs from data parallel training."""
raise NotImplementedError()
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False
|