Spaces:
Runtime error
Runtime error
File size: 81,313 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 |
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq
#
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------
"""
We just merge all the required modules and functions into one python file.
It is for easily use the pre-trained model to extract features.
"""
import math
import numpy as np
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
from torch import Tensor
from typing import Any, Dict, List, Tuple, Callable, Optional
logger = logging.getLogger(__name__)
# rewrite name for backward compatibility in `make_generation_fast_`
def module_name_fordropout(module_name: str) -> str:
if module_name == "TransformerEncoderBase":
return "TransformerEncoder"
else:
return module_name
def utils_make_positions(tensor, padding_idx: int, onnx_trace: bool = False):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
def utils_item(tensor):
# tpu-comment: making this a no-op for xla devices.
if torch.is_tensor(tensor) and tensor.device.type == "xla":
return tensor.detach()
if hasattr(tensor, "item"):
return tensor.item()
if hasattr(tensor, "__getitem__"):
return tensor[0]
return tensor
def fsdp_wrap(module, min_num_params: Optional[int] = None, **kwargs):
"""
Helper to wrap layers/modules in FSDP. This falls back to a no-op if
fairscale is not available.
Args:
module (nn.Module): module to (maybe) wrap
min_num_params (int, Optional): minimum number of layer params to wrap
"""
try:
from fairscale.nn import wrap
if min_num_params is not None:
num_params = sum(p.numel() for p in module.parameters())
if num_params >= min_num_params:
return wrap(module, **kwargs)
else:
return module
else:
return wrap(module, **kwargs)
except ImportError:
return module
def quant_noise(module, p, block_size):
"""
Wraps modules and applies quantization noise to the weights for
subsequent quantization with Iterative Product Quantization as
described in "Training with Quantization Noise for Extreme Model Compression"
Args:
- module: nn.Module
- p: amount of Quantization Noise
- block_size: size of the blocks for subsequent quantization with iPQ
Remarks:
- Module weights must have the right sizes wrt the block size
- Only Linear, Embedding and Conv2d modules are supported for the moment
- For more detail on how to quantize by blocks with convolutional weights,
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
- We implement the simplest form of noise here as stated in the paper
which consists in randomly dropping blocks
"""
# if no quantization noise, don't register hook
if p <= 0:
return module
# supported modules
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
# test whether module.weight has the right sizes wrt block_size
is_conv = module.weight.ndim == 4
# 2D matrix
if not is_conv:
assert (
module.weight.size(1) % block_size == 0
), "Input features must be a multiple of block sizes"
# 4D matrix
else:
# 1x1 convolutions
if module.kernel_size == (1, 1):
assert (
module.in_channels % block_size == 0
), "Input channels must be a multiple of block sizes"
# regular convolutions
else:
k = module.kernel_size[0] * module.kernel_size[1]
assert k % block_size == 0, "Kernel size must be a multiple of block size"
def _forward_pre_hook(mod, input):
# no noise for evaluation
if mod.training:
if not is_conv:
# gather weight and sizes
weight = mod.weight
in_features = weight.size(1)
out_features = weight.size(0)
# split weight matrix into blocks and randomly drop selected blocks
mask = torch.zeros(
in_features // block_size * out_features, device=weight.device
)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
else:
# gather weight and sizes
weight = mod.weight
in_channels = mod.in_channels
out_channels = mod.out_channels
# split weight matrix into blocks and randomly drop selected blocks
if mod.kernel_size == (1, 1):
mask = torch.zeros(
int(in_channels // block_size * out_channels),
device=weight.device,
)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
else:
mask = torch.zeros(
weight.size(0), weight.size(1), device=weight.device
)
mask.bernoulli_(p)
mask = (
mask.unsqueeze(2)
.unsqueeze(3)
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
)
# scale weights and apply mask
mask = mask.to(
torch.bool
) # x.bool() is not currently supported in TorchScript
s = 1 / (1 - p)
mod.weight.data = s * weight.masked_fill(mask, 0)
module.register_forward_pre_hook(_forward_pre_hook)
return module
def relu_squared(x: torch.Tensor):
return F.relu(x).pow(2)
def gelu(x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(x.float()).type_as(x)
def gelu_accurate(x):
if not hasattr(gelu_accurate, "_a"):
gelu_accurate._a = math.sqrt(2 / math.pi)
return (
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
)
def get_activation_fn(activation: str) -> Callable:
"""Returns the activation function corresponding to `activation`"""
if activation == "relu":
return F.relu
elif activation == "relu_squared":
return relu_squared
elif activation == "gelu":
return gelu
elif activation == "gelu_fast":
logger.warn(
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
)
return gelu_accurate
elif activation == "gelu_accurate":
return gelu_accurate
elif activation == "tanh":
return torch.tanh
elif activation == "linear":
return lambda x: x
elif activation == "swish":
return torch.nn.SiLU
else:
raise RuntimeError("--activation-fn {} not supported".format(activation))
def softmax(x, dim: int, onnx_trace: bool = False):
if onnx_trace:
return F.softmax(x.float(), dim=dim)
else:
return F.softmax(x, dim=dim, dtype=torch.float32)
def compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[torch.Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
require_same_masks: bool = True,
mask_dropout: float = 0.0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape
Args:
shape: the the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_type: how to compute mask lengths
static = fixed size
uniform = sample from uniform distribution [mask_other, mask_length*2]
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
poisson = sample from possion distribution with lambda = mask length
min_masks: minimum number of masked spans
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
mask_dropout: randomly dropout this percentage of masks in each example
"""
bsz, all_sz = shape
mask = np.full((bsz, all_sz), False)
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ np.random.rand()
)
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(bsz):
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ np.random.rand()
)
num_mask = max(min_masks, num_mask)
else:
sz = all_sz
num_mask = all_num_mask
if mask_type == "static":
lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform":
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal":
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
lengths = [max(1, int(round(x))) for x in lengths]
elif mask_type == "poisson":
lengths = np.random.poisson(mask_length, size=num_mask)
lengths = [int(round(x)) for x in lengths]
else:
raise Exception("unknown mask selection " + mask_type)
if sum(lengths) == 0:
lengths[0] = min(mask_length, sz - 1)
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = np.random.randint(s, e - length)
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - keep_length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0 for s, e in parts),
np.int,
)
l_sum = np.sum(lens)
if l_sum == 0:
break
probs = lens / np.sum(lens)
c = np.random.choice(len(parts), p=probs)
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = np.asarray(mask_idc)
else:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
mask_idc = np.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
min_len = min([len(m) for m in mask_idcs])
for i, mask_idc in enumerate(mask_idcs):
if len(mask_idc) > min_len and require_same_masks:
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
if mask_dropout > 0:
num_holes = np.rint(len(mask_idc) * mask_dropout).astype(int)
mask_idc = np.random.choice(
mask_idc, len(mask_idc) - num_holes, replace=False
)
mask[i, mask_idc] = True
return mask
def init_bert_params(module):
"""
Initialize the weights specific to the BERT Model.
This overrides the default initializations depending on the specified arguments.
1. If normal_init_linear_weights is set then weights of linear
layer will be initialized using the normal distribution and
bais will be set to the specified value.
2. If normal_init_embed_weights is set then weights of embedding
layer will be initialized using the normal distribution.
3. If normal_init_proj_weights is set then weights of
in_project_weight for MultiHeadAttention initialized using
the normal distribution (to be validated).
"""
def normal_(data):
# with FSDP, module params will be on CUDA, so we cast them back to CPU
# so that the RNG is consistent with and without FSDP
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
if isinstance(module, nn.Linear):
normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, MultiheadAttention):
normal_(module.q_proj.weight.data)
normal_(module.k_proj.weight.data)
normal_(module.v_proj.weight.data)
def pad_to_multiple(x, multiple, dim=-1, value=0):
# Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41
if x is None:
return None, 0
tsz = x.size(dim)
m = tsz / multiple
remainder = math.ceil(m) * multiple - tsz
if m.is_integer():
return x, 0
pad_offset = (0,) * (-1 - dim) * 2
return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder
def is_xla_tensor(tensor):
return torch.is_tensor(tensor) and tensor.device.type == "xla"
def index_put(tensor, indices, value):
if is_xla_tensor(tensor):
for _ in range(indices.dim(), tensor.dim()):
indices = indices.unsqueeze(-1)
if indices.size(-1) < tensor.size(-1):
indices = indices.expand_as(tensor)
tensor = torch.mul(tensor, ~indices) + torch.mul(value, indices)
else:
tensor[indices] = value
return tensor
def PositionalEmbedding(
num_embeddings: int,
embedding_dim: int,
padding_idx: int,
learned: bool = False,
):
if learned:
# if padding_idx is specified then offset the embedding ids by
# this index and adjust num_embeddings appropriately
# TODO: The right place for this offset would be inside
# LearnedPositionalEmbedding. Move this there for a cleaner implementation.
if padding_idx is not None:
num_embeddings = num_embeddings + padding_idx + 1
m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5)
if padding_idx is not None:
nn.init.constant_(m.weight[padding_idx], 0)
else:
m = SinusoidalPositionalEmbedding(
embedding_dim,
padding_idx,
init_size=num_embeddings + padding_idx + 1,
)
return m
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
if torch.jit.is_scripting() or torch.jit.is_tracing():
export = True
if not export and torch.cuda.is_available() and has_fused_layernorm:
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
class TransformerEncoderBase(nn.Module):
"""
Transformer encoder consisting of *cfg.encoder.layers* layers. Each layer
is a :class:`TransformerEncoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary: deprecated(None)
embed_tokens (torch.nn.Embedding): input embedding
"""
def __init__(self, cfg, dictionary, embed_tokens, use_rel_pos_enc=False, scaling_for_att=1.0):
self.cfg = cfg
super().__init__()
self.register_buffer("version", torch.Tensor([3]))
self.dropout_module = FairseqDropout(
cfg.dropout, module_name=module_name_fordropout(self.__class__.__name__)
)
self.encoder_layerdrop = cfg.encoder.layerdrop
embed_dim = embed_tokens.embedding_dim if embed_tokens is not None else cfg.encoder.embed_dim
self.padding_idx = embed_tokens.padding_idx if embed_tokens is not None else 1
self.max_source_positions = cfg.max_source_positions
self.embed_tokens = embed_tokens
self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim)
self.embed_positions = (
PositionalEmbedding(
cfg.max_source_positions,
embed_dim,
self.padding_idx,
learned=cfg.encoder.learned_pos,
)
if not cfg.no_token_positional_embeddings
else None
)
if cfg.layernorm_embedding:
self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export)
else:
self.layernorm_embedding = None
if not cfg.adaptive_input and cfg.quant_noise.pq > 0:
self.quant_noise = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=False),
cfg.quant_noise.pq,
cfg.quant_noise.pq_block_size,
)
else:
self.quant_noise = None
if self.encoder_layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.encoder_layerdrop)
else:
self.layers = nn.ModuleList([])
self.use_rel_pos_enc = use_rel_pos_enc
self.scaling_for_att = scaling_for_att
self.layers.extend(
[self.build_encoder_layer(cfg) for i in range(cfg.encoder.layers)]
)
self.num_layers = len(self.layers)
if cfg.encoder.normalize_before:
self.layer_norm = LayerNorm(embed_dim, export=cfg.export)
else:
self.layer_norm = None
if self.use_rel_pos_enc:
self.pos_emb = RelativePositionalEncoding(embed_dim // cfg.encoder.attention_heads, 160)
def build_encoder_layer(self, cfg):
layer = TransformerEncoderLayerBase(cfg, has_relative_attention_bias=self.use_rel_pos_enc, scaling_for_att=self.scaling_for_att)
checkpoint = cfg.checkpoint_activations
if checkpoint:
raise ValueError("We don't support checkpoint_activations for now! Please set cfg.checkpoint_activations=False.")
min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0
layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
return layer
def forward_embedding(
self, src_tokens, token_embedding: Optional[torch.Tensor] = None
):
# embed tokens and positions
if token_embedding is None:
token_embedding = self.embed_tokens(src_tokens)
x = embed = self.embed_scale * token_embedding
if self.embed_positions is not None:
x = embed + self.embed_positions(src_tokens)
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
if self.quant_noise is not None:
x = self.quant_noise(x)
return x, embed
def forward(
self,
src_tokens,
src_lengths: Optional[torch.Tensor] = None,
return_all_hiddens: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
uniformity_layers: Optional[List[int]] = None,
):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (torch.LongTensor): lengths of each source sentence of
shape `(batch)`
return_all_hiddens (bool, optional): also return all of the
intermediate hidden states (default: False).
token_embeddings (torch.Tensor, optional): precomputed embeddings
default `None` will recompute embeddings
Returns:
dict:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
- **encoder_embedding** (Tensor): the (scaled) embedding lookup
of shape `(batch, src_len, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
"""
return self.forward_scriptable(
src_tokens, src_lengths, return_all_hiddens, token_embeddings, uniformity_layers
)
# TorchScript doesn't support super() method so that the scriptable Subclass
# can't access the base class model in Torchscript.
# Current workaround is to add a helper function with different name and
# call the helper function from scriptable Subclass.
def forward_scriptable(
self,
src_tokens,
src_lengths: Optional[torch.Tensor] = None,
return_all_hiddens: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
uniformity_layers: Optional[List[int]] = None,
):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (torch.LongTensor): lengths of each source sentence of
shape `(batch)`
return_all_hiddens (bool, optional): also return all of the
intermediate hidden states (default: False).
token_embeddings (torch.Tensor, optional): precomputed embeddings
default `None` will recompute embeddings
Returns:
dict:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
- **encoder_embedding** (Tensor): the (scaled) embedding lookup
of shape `(batch, src_len, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
"""
# compute padding mask
encoder_padding_mask = src_tokens.eq(self.padding_idx)
has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any()
x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings)
# account for padding while computing the representation
if has_pads:
x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))
# B x T x C -> T x B x C
x = x.transpose(0, 1)
if self.use_rel_pos_enc:
x_len = x.shape[0]
pos_seq = torch.arange(0, x_len).long().to(x.device)
pos_seq = pos_seq[:, None] - pos_seq[None, :]
pos_k, pos_v = self.pos_emb(pos_seq)
else:
pos_k = None
encoder_states = []
uniformity_hiddens = []
if return_all_hiddens:
encoder_states.append(x)
if uniformity_layers is not None and 0 in uniformity_layers:
x = F.normalize(x.float(), dim=-1).type_as(x)
uniformity_hiddens.append(x)
# encoder layers
for i, layer in enumerate(self.layers):
x = layer(
x, encoder_padding_mask=encoder_padding_mask if has_pads else None,
pos_bias=pos_k,
)
if uniformity_layers is not None and i+1 in uniformity_layers:
x = F.normalize(x.float(), dim=-1).type_as(x)
uniformity_hiddens.append(x)
if return_all_hiddens:
assert encoder_states is not None
encoder_states.append(x)
if self.layer_norm is not None:
x = self.layer_norm(x)
# The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
# `forward` so we use a dictionary instead.
# TorchScript does not support mixed values so the values are all lists.
# The empty list is equivalent to None.
src_lengths = (
src_tokens.ne(self.padding_idx)
.sum(dim=1, dtype=torch.int32)
.reshape(-1, 1)
.contiguous()
)
return {
"encoder_out": [x], # T x B x C
"encoder_padding_mask": [encoder_padding_mask], # B x T
"encoder_embedding": [encoder_embedding], # B x T x C
"encoder_states": encoder_states, # List[T x B x C]
"uniformity_hiddens": uniformity_hiddens, # List[T x B x C]
"src_tokens": [],
"src_lengths": [src_lengths],
}
def forward_torchscript(self, net_input: Dict[str, Tensor]):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
if torch.jit.is_scripting():
return self.forward(
src_tokens=net_input["src_tokens"],
src_lengths=net_input["src_lengths"],
)
else:
return self.forward_non_torchscript(net_input)
@torch.jit.unused
def forward_non_torchscript(self, net_input: Dict[str, Tensor]):
encoder_input = {
k: v for k, v in net_input.items() if k != "prev_output_tokens"
}
return self.forward(**encoder_input)
@torch.jit.export
def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
if len(encoder_out["encoder_out"]) == 0:
new_encoder_out = []
else:
new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)]
if len(encoder_out["encoder_padding_mask"]) == 0:
new_encoder_padding_mask = []
else:
new_encoder_padding_mask = [
encoder_out["encoder_padding_mask"][0].index_select(0, new_order)
]
if len(encoder_out["encoder_embedding"]) == 0:
new_encoder_embedding = []
else:
new_encoder_embedding = [
encoder_out["encoder_embedding"][0].index_select(0, new_order)
]
if len(encoder_out["src_tokens"]) == 0:
src_tokens = []
else:
src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)]
if len(encoder_out["src_lengths"]) == 0:
src_lengths = []
else:
src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)]
encoder_states = encoder_out["encoder_states"]
if len(encoder_states) > 0:
for idx, state in enumerate(encoder_states):
encoder_states[idx] = state.index_select(1, new_order)
return {
"encoder_out": new_encoder_out, # T x B x C
"encoder_padding_mask": new_encoder_padding_mask, # B x T
"encoder_embedding": new_encoder_embedding, # B x T x C
"encoder_states": encoder_states, # List[T x B x C]
"src_tokens": src_tokens, # B x T
"src_lengths": src_lengths, # B x 1
}
def max_positions(self):
"""Maximum input length supported by the encoder."""
if self.embed_positions is None:
return self.max_source_positions
return min(self.max_source_positions, self.embed_positions.max_positions)
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions."""
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
weights_key = "{}.embed_positions.weights".format(name)
if weights_key in state_dict:
print("deleting {0}".format(weights_key))
del state_dict[weights_key]
state_dict[
"{}.embed_positions._float_tensor".format(name)
] = torch.FloatTensor(1)
for i in range(self.num_layers):
# update layer norms
self.layers[i].upgrade_state_dict_named(
state_dict, "{}.layers.{}".format(name, i)
)
version_key = "{}.version".format(name)
if utils_item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2:
# earlier checkpoints did not normalize after the stack of layers
self.layer_norm = None
self.normalize = False
state_dict[version_key] = torch.Tensor([1])
return state_dict
def set_num_updates(self, num_updates):
"""State from trainer to pass along to model at every update."""
def _apply(m):
if hasattr(m, "set_num_updates") and m != self:
m.set_num_updates(num_updates)
self.apply(_apply)
class TransformerEncoderLayerBase(nn.Module):
"""Encoder layer block.
In the original paper each operation (multi-head attention or FFN) is
postprocessed with: `dropout -> add residual -> layernorm`. In the
tensor2tensor code they suggest that learning is more robust when
preprocessing each layer with layernorm and postprocessing with:
`dropout -> add residual`. We default to the approach in the paper, but the
tensor2tensor approach can be enabled by setting
*cfg.encoder.normalize_before* to ``True``.
Args:
args (argparse.Namespace): parsed command-line arguments
"""
def __init__(self, cfg, has_relative_attention_bias=False, scaling_for_att=1.0):
super().__init__()
self.cfg = cfg
self.embed_dim = cfg.encoder.embed_dim
self.quant_noise = cfg.quant_noise.pq
self.quant_noise_block_size = cfg.quant_noise.pq_block_size
self.self_attn = self.build_self_attention(self.embed_dim, cfg, has_relative_attention_bias=has_relative_attention_bias, scaling_for_att=scaling_for_att)
self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
self.dropout_module = FairseqDropout(
cfg.dropout, module_name=self.__class__.__name__
)
self.activation_fn = get_activation_fn(activation=cfg.activation_fn)
activation_dropout_p = cfg.activation_dropout
if activation_dropout_p == 0:
# for backwards compatibility with models that use cfg.relu_dropout
activation_dropout_p = cfg.relu_dropout or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = cfg.encoder.normalize_before
self.fc1 = self.build_fc1(
self.embed_dim,
cfg.encoder.ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
cfg.encoder.ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.final_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
if has_relative_attention_bias:
self.norm_k = LayerNorm(self.embed_dim // cfg.encoder.attention_heads)
def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(
nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size
)
def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(
nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size
)
def build_self_attention(self, embed_dim, cfg, has_relative_attention_bias=False, scaling_for_att=1.0):
return MultiheadAttention(
embed_dim,
cfg.encoder.attention_heads,
dropout=cfg.attention_dropout,
self_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
has_relative_attention_bias=has_relative_attention_bias,
scaling_for_att=scaling_for_att,
)
def residual_connection(self, x, residual):
return residual + x
def upgrade_state_dict_named(self, state_dict, name):
"""
Rename layer norm states from `...layer_norms.0.weight` to
`...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to
`...final_layer_norm.weight`
"""
layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"}
for old, new in layer_norm_map.items():
for m in ("weight", "bias"):
k = "{}.layer_norms.{}.{}".format(name, old, m)
if k in state_dict:
state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k]
del state_dict[k]
def forward(
self,
x,
encoder_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor] = None,
pos_bias=None,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, seq_len)` where padding elements are indicated by ``1``.
attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`,
where `tgt_len` is the length of output and `src_len` is the
length of input, though here both are equal to `seq_len`.
`attn_mask[tgt_i, src_j] = 1` means that when calculating the
embedding for `tgt_i`, we exclude (mask out) `src_j`. This is
useful for strided self-attention.
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
# anything in original attn_mask = 1, becomes -1e8
# anything in original attn_mask = 0, becomes 0
# Note that we cannot use -inf here, because at some edge cases,
# the attention weight (before softmax) for some padded element in query
# will become -inf, which results in NaN in model parameters
if attn_mask is not None:
attn_mask = attn_mask.masked_fill(
attn_mask.to(torch.bool), -1e8 if x.dtype == torch.float32 else -1e4
)
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if pos_bias is not None:
pos_bias = self.norm_k(pos_bias)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask,
need_weights=False,
attn_mask=attn_mask,
position_bias=pos_bias,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
return x
class TransformerEncoder(nn.Module):
"""
wav2vec-style transformer encoder.
"""
def __init__(self, args):
super().__init__()
self.dropout = args.dropout
self.embedding_dim = args.encoder_embed_dim
self.required_seq_len_multiple = args.required_seq_len_multiple
self.pos_conv = nn.Conv1d(
self.embedding_dim,
self.embedding_dim,
kernel_size=args.conv_pos,
padding=args.conv_pos // 2,
groups=args.conv_pos_groups,
)
dropout = 0
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
nn.init.constant_(self.pos_conv.bias, 0)
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
layers = []
self.use_rel_pos_enc = getattr(args, "use_rel_pos_enc", False)
for _ in range(args.encoder_layers):
layer = TransformerSentenceEncoderLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
num_attention_heads=args.encoder_attention_heads,
dropout=self.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_fn=args.activation_fn,
layer_norm_first=args.layer_norm_first,
has_relative_attention_bias=self.use_rel_pos_enc,
scaling_for_att=getattr(args, "scaling_for_att", 1.0)
)
if args.checkpoint_activations:
raise ValueError("We don't support checkpoint_activations for now! Please set checkpoint_activations=False.")
layers.append(layer)
self.layers = nn.ModuleList(layers)
self.layer_norm_first = args.layer_norm_first
self.layer_norm = LayerNorm(self.embedding_dim)
self.layerdrop = args.encoder_layerdrop
if self.use_rel_pos_enc:
self.pos_emb = RelativePositionalEncoding(args.encoder_embed_dim // args.encoder_attention_heads, 160)
self.apply(init_bert_params)
def forward(self, x, padding_mask=None, layer=None, conv_pos=True):
x, layer_results = self.extract_features(x, padding_mask, layer, conv_pos)
if self.layer_norm_first and (layer is None or layer >= len(self.layers) - 1):
x = self.layer_norm(x)
return x, layer_results
def extract_features(self, x, padding_mask=None, tgt_layer=None, conv_pos=True):
if padding_mask is not None:
x = index_put(x, padding_mask, 0)
if conv_pos:
x_conv = self.pos_conv(x.transpose(1, 2))
x_conv = x_conv.transpose(1, 2)
x = x + x_conv
if not self.layer_norm_first:
x = self.layer_norm(x)
# pad to the sequence length dimension
x, pad_length = pad_to_multiple(
x, self.required_seq_len_multiple, dim=-2, value=0
)
if pad_length > 0 and padding_mask is None:
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
padding_mask[:, -pad_length:] = True
else:
padding_mask, _ = pad_to_multiple(
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
if self.use_rel_pos_enc:
x_len = x.shape[0]
pos_seq = torch.arange(0, x_len).long().to(x.device)
pos_seq = pos_seq[:, None] - pos_seq[None, :]
pos_k, pos_v = self.pos_emb(pos_seq)
else:
pos_k = None
layer_results = []
r = None
for i, layer in enumerate(self.layers):
dropout_probability = np.random.random()
if not self.training or (dropout_probability > self.layerdrop):
x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_k)
if tgt_layer is not None:
# unpad if needed
if pad_length > 0:
layer_results.append(
x[:-pad_length]
# (
# x[:-pad_length],
# z[:, :-pad_length, :-pad_length]
# if z is not None
# else z,
# )
)
else:
# layer_results.append((x, z))
layer_results.append(x)
if i == tgt_layer:
r = x
break
if r is not None:
x = r
# T x B x C -> B x T x C
x = x.transpose(0, 1)
# undo paddding
if pad_length > 0:
x = x[:, :-pad_length]
return x, layer_results
def max_positions(self):
"""Maximum output length supported by the encoder."""
return self.args.max_positions
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
return state_dict
class TransformerSentenceEncoderLayer(nn.Module):
"""
wav2vec-style transformer layer
"""
def __init__(
self,
embedding_dim: float = 768,
ffn_embedding_dim: float = 3072,
num_attention_heads: float = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
layer_norm_first: bool = False,
has_relative_attention_bias: bool = False,
scaling_for_att: float = 1.0,
) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = embedding_dim
self.dropout = dropout
self.activation_dropout = activation_dropout
# Initialize blocks
self.activation_fn = get_activation_fn(activation_fn)
self.self_attn = MultiheadAttention(
self.embedding_dim,
num_attention_heads,
dropout=attention_dropout,
self_attention=True,
has_relative_attention_bias=has_relative_attention_bias,
scaling_for_att=scaling_for_att
)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(self.activation_dropout)
self.dropout3 = nn.Dropout(dropout)
self.layer_norm_first = layer_norm_first
# layer norm associated with the self attention layer
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
# layer norm associated with the position wise feed-forward NN
self.final_layer_norm = LayerNorm(self.embedding_dim)
if has_relative_attention_bias:
self.norm_k = LayerNorm(self.embedding_dim//num_attention_heads)
def forward(
self,
x: torch.Tensor,
self_attn_mask: torch.Tensor = None,
self_attn_padding_mask: torch.Tensor = None,
need_weights: bool = False,
att_args=None,
pos_bias=None,
):
"""
LayerNorm is applied either before or after the self-attention/ffn
modules similar to the original Transformer imlementation.
"""
residual = x
if self.layer_norm_first:
x = self.self_attn_layer_norm(x)
if pos_bias is not None:
pos_bias = self.norm_k(pos_bias)
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
attn_mask=self_attn_mask,
position_bias=pos_bias,
)
x = self.dropout1(x)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
x = self.dropout3(x)
x = residual + x
else:
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
position_bias=pos_bias,
)
x = self.dropout1(x)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
x = self.dropout3(x)
x = residual + x
x = self.final_layer_norm(x)
return x, attn
class FairseqDropout(nn.Module):
def __init__(self, p, module_name=None):
super().__init__()
self.p = p
self.module_name = module_name
self.apply_during_inference = False
def forward(self, x, inplace: bool = False):
if self.p > 0 and (self.training or self.apply_during_inference):
return F.dropout(x, p=self.p, training=True, inplace=inplace)
else:
return x
def make_generation_fast_(
self,
name: str,
retain_dropout: bool = False,
retain_dropout_modules: Optional[List[str]] = None,
**kwargs
):
if retain_dropout:
if retain_dropout_modules is not None and self.module_name is None:
logger.warning(
"Cannot enable dropout during inference for module {} "
"because module_name was not set".format(name)
)
elif (
retain_dropout_modules is None # if None, apply to all modules
or self.module_name in retain_dropout_modules
):
logger.info(
"Enabling dropout during inference for module: {}".format(name)
)
self.apply_during_inference = True
else:
logger.info("Disabling dropout for module: {}".format(name))
class LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.onnx_trace = False
if self.padding_idx is not None:
self.max_positions = self.num_embeddings - self.padding_idx - 1
else:
self.max_positions = self.num_embeddings
def forward(
self,
input: Tensor,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
positions: Optional[Tensor] = None,
):
"""Input is expected to be of size [bsz x seqlen]."""
assert (positions is None) or (
self.padding_idx is None
), "If positions is pre-computed then padding_idx should not be set."
if positions is None:
if incremental_state is not None:
# positions is the same for every token when decoding a single step
# Without the int() cast, it doesn't work in some cases when exporting to ONNX
positions = torch.zeros(
(1, 1), device=input.device, dtype=input.dtype
).fill_(int(self.padding_idx + input.size(1)))
else:
positions = utils_make_positions(
input, self.padding_idx, onnx_trace=self.onnx_trace
)
positions = torch.clamp(positions, max=self.padding_idx + self.max_positions)
return F.embedding(
positions,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx if padding_idx is not None else 0
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size, embedding_dim, padding_idx
)
self.onnx_trace = False
self.register_buffer("_float_tensor", torch.FloatTensor(1))
self.max_positions = int(1e5)
def prepare_for_onnx_export_(self):
self.onnx_trace = True
@staticmethod
def get_embedding(
num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None
):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(
1
) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(
num_embeddings, -1
)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(
self,
input,
incremental_state: Optional[Any] = None,
timestep: Optional[Tensor] = None,
positions: Optional[Any] = None,
):
"""Input is expected to be of size [bsz x seqlen]."""
bspair = torch.onnx.operators.shape_as_tensor(input)
bsz, seq_len = bspair[0], bspair[1]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos, self.embedding_dim, self.padding_idx
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
if self.onnx_trace:
return (
self.weights.index_select(index=self.padding_idx + pos, dim=0)
.unsqueeze(1)
.repeat(bsz, 1, 1)
)
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = utils_make_positions(
input, self.padding_idx, onnx_trace=self.onnx_trace
)
if self.onnx_trace:
flat_embeddings = self.weights.detach().index_select(0, positions.view(-1))
embedding_shape = torch.cat(
(bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long))
)
embeddings = torch.onnx.operators.reshape_from_tensor_shape(
flat_embeddings, embedding_shape
)
return embeddings
return (
self.weights.index_select(0, positions.view(-1))
.view(bsz, seq_len, -1)
.detach()
)
try:
from apex.normalization import FusedLayerNorm as _FusedLayerNorm
has_fused_layernorm = True
class FusedLayerNorm(_FusedLayerNorm):
@torch.jit.unused
def forward(self, x):
if not x.is_cuda:
return super().forward(x)
else:
with torch.cuda.device(x.device):
return super().forward(x)
except ImportError:
has_fused_layernorm = False
class Fp32LayerNorm(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.layer_norm(
input.float(),
self.normalized_shape,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
class LayerDropModuleList(nn.ModuleList):
"""
A LayerDrop implementation based on :class:`torch.nn.ModuleList`.
We refresh the choice of which layers to drop every time we iterate
over the LayerDropModuleList instance. During evaluation we always
iterate over all layers.
Usage::
layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3])
for layer in layers: # this might iterate over layers 1 and 3
x = layer(x)
for layer in layers: # this might iterate over all layers
x = layer(x)
for layer in layers: # this might not iterate over any layers
x = layer(x)
Args:
p (float): probability of dropping out each layer
modules (iterable, optional): an iterable of modules to add
"""
def __init__(self, p, modules=None):
super().__init__(modules)
self.p = p
def __iter__(self):
dropout_probs = torch.empty(len(self)).uniform_()
for i, m in enumerate(super().__iter__()):
if not self.training or (dropout_probs[i] > self.p):
yield m
class RelativePositionalEncoding(torch.nn.Module):
def __init__(self, d_model, maxlen=1000, embed_v=False):
super(RelativePositionalEncoding, self).__init__()
self.d_model = d_model
self.maxlen = maxlen
self.pe_k = torch.nn.Embedding(2*maxlen, d_model)
if embed_v:
self.pe_v = torch.nn.Embedding(2*maxlen, d_model)
self.embed_v = embed_v
def forward(self, pos_seq, incremental_state=None):
pos_seq[pos_seq < -self.maxlen] = -self.maxlen
pos_seq[pos_seq >= self.maxlen] = self.maxlen - 1
pos_seq = pos_seq + self.maxlen
if incremental_state is not None:
pos_seq = pos_seq[-1:]
if self.embed_v:
return self.pe_k(pos_seq), self.pe_v(pos_seq)
else:
return self.pe_k(pos_seq), None
class MultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
q_noise=0.0,
qn_block_size=8,
has_relative_attention_bias=False,
scaling_for_att=1.0
):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.has_relative_attention_bias = has_relative_attention_bias
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.scaling_for_att = scaling_for_att
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, (
"Self-attention requires query, key and " "value to be of the same size"
)
self.k_proj = quant_noise(
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.v_proj = quant_noise(
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.q_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.out_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
self.onnx_trace = False
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def reset_parameters(self):
if self.qkv_same_dim:
# Empirically observed the convergence to be much better with
# the scaled initialization
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
position_bias: Optional[Tensor] = None
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
is_tpu = query.device.type == "xla"
tgt_len, bsz, embed_dim = query.size()
src_len = tgt_len
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}"
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
assert key_bsz == bsz
assert value is not None
assert src_len, bsz == value.shape[:2]
if (
not self.onnx_trace
and not is_tpu # don't use PyTorch version on TPUs
and incremental_state is None
and not static_kv
# A workaround for quantization to work. Otherwise JIT compilation
# treats bias in linear module as method.
and not torch.jit.is_scripting()
and not self.has_relative_attention_bias
):
assert key is not None and value is not None
return F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
torch.empty([0]),
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout_module.p,
self.out_proj.weight,
self.out_proj.bias,
self.training or self.dropout_module.apply_during_inference,
key_padding_mask,
need_weights,
attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
q *= (1 / self.scaling_for_att)
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
],
dim=1,
)
q = (
q.contiguous()
.view(tgt_len, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if k is not None:
k = (
k.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
src_len = k.size(1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
assert k.size(1) == src_len
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
torch.zeros(key_padding_mask.size(0), 1).type_as(
key_padding_mask
),
],
dim=1,
)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
if position_bias is not None: ## first order
## position_bias: [241, 241, 64]
#print ("attn_weights: ", attn_weights.size()) # [492, 241, 241]
reshape_q = q.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0,1) #[241, 492, 64]
#print ("reshape_q: ", reshape_q.size())
B = torch.matmul(reshape_q, position_bias.transpose(-2, -1))
#print ("B: ", B.size()) ## [241, 492, 241]
#B = B.transpose(0, 1).view(bsz, self.num_heads, position_bias.size(0), position_bias.size(1))
B = B.transpose(0, 1).view(bsz*self.num_heads, position_bias.size(0), position_bias.size(1))
#print ("B 2: ", B.size())
attn_weights += B
attn_weights *= self.scaling_for_att
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if not is_tpu:
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
else:
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if self.scaling_for_att > 1.0:
attn_weights = attn_weights - attn_weights.detach().max(dim=-1, keepdim=True)[0]
if before_softmax:
return attn_weights, v
attn_weights_float = softmax(
attn_weights, dim=-1, onnx_trace=self.onnx_trace
)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
if self.onnx_trace and attn.size(1) == 1:
# when ONNX tracing a single decoder step (sequence length == 1)
# the transpose is a no-op copy before view, thus unnecessary
attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
@staticmethod
def _append_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
)
# During incremental decoding, as the padding token enters and
# leaves the frame, there will be a time when prev or current
# is None
elif prev_key_padding_mask is not None:
if src_len > prev_key_padding_mask.size(1):
filler = torch.zeros(
(batch_size, src_len - prev_key_padding_mask.size(1)),
device=prev_key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), filler.float()], dim=1
)
else:
new_key_padding_mask = prev_key_padding_mask.float()
elif key_padding_mask is not None:
if src_len > key_padding_mask.size(1):
filler = torch.zeros(
(batch_size, src_len - key_padding_mask.size(1)),
device=key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[filler.float(), key_padding_mask.float()], dim=1
)
else:
new_key_padding_mask = key_padding_mask.float()
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
@torch.jit.export
def reorder_incremental_state(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
new_order: Tensor,
):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
if self.encoder_decoder_attention and input_buffer_k.size(
0
) == new_order.size(0):
break
input_buffer[k] = input_buffer_k.index_select(0, new_order)
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
return incremental_state
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
) -> Dict[str, Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, "attn_state")
if result is not None:
return result
else:
empty_result: Dict[str, Optional[Tensor]] = {}
return empty_result
def _set_input_buffer(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
buffer: Dict[str, Optional[Tensor]],
):
return self.set_incremental_state(incremental_state, "attn_state", buffer)
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
return attn_weights
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
items_to_add = {}
keys_to_remove = []
for k in state_dict.keys():
if k.endswith(prefix + "in_proj_weight"):
# in_proj_weight used to be q + k + v with same dimensions
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
keys_to_remove.append(k)
k_bias = prefix + "in_proj_bias"
if k_bias in state_dict.keys():
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
dim : 2 * dim
]
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
keys_to_remove.append(prefix + "in_proj_bias")
for k in keys_to_remove:
del state_dict[k]
for key, value in items_to_add.items():
state_dict[key] = value
class ConvFeatureExtractionModel(nn.Module):
def __init__(
self,
conv_layers: List[Tuple[int, int, int]],
dropout: float = 0.0,
mode: str = "default",
conv_bias: bool = False,
):
super().__init__()
assert mode in {"default", "layer_norm"}
def block(
n_in,
n_out,
k,
stride,
is_layer_norm=False,
is_group_norm=False,
conv_bias=False,
):
def make_conv():
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
nn.init.kaiming_normal_(conv.weight)
return conv
assert (
is_layer_norm and is_group_norm
) == False, "layer norm and group norm are exclusive"
if is_layer_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
nn.Sequential(
TransposeLast(),
Fp32LayerNorm(dim, elementwise_affine=True),
TransposeLast(),
),
nn.GELU(),
)
elif is_group_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
Fp32GroupNorm(dim, dim, affine=True),
nn.GELU(),
)
else:
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
in_d = 1
self.conv_layers = nn.ModuleList()
for i, cl in enumerate(conv_layers):
assert len(cl) == 3, "invalid conv definition: " + str(cl)
(dim, k, stride) = cl
self.conv_layers.append(
block(
in_d,
dim,
k,
stride,
is_layer_norm=mode == "layer_norm",
is_group_norm=mode == "default" and i == 0,
conv_bias=conv_bias,
)
)
in_d = dim
def forward(self, x):
# BxT -> BxCxT
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x
class TransposeLast(nn.Module):
def __init__(self, deconstruct_idx=None):
super().__init__()
self.deconstruct_idx = deconstruct_idx
def forward(self, x):
if self.deconstruct_idx is not None:
x = x[self.deconstruct_idx]
return x.transpose(-2, -1)
class Fp32GroupNorm(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.group_norm(
input.float(),
self.num_groups,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
class GradMultiply(torch.autograd.Function):
@staticmethod
def forward(ctx, x, scale):
ctx.scale = scale
res = x.new(x)
return res
@staticmethod
def backward(ctx, grad):
return grad * ctx.scale, None
class Rotate3D(nn.Module):
"""
(T, B, D) --> (B, D, T) --> (D, T, B) --> (T, B, D)
"""
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(1, 2, 0)
class SamePad(nn.Module):
def __init__(self, kernel_size, causal=False):
super().__init__()
if causal:
self.remove = kernel_size - 1
else:
self.remove = 1 if kernel_size % 2 == 0 else 0
def forward(self, x):
if self.remove > 0:
x = x[:, :, : -self.remove]
return x
|