File size: 26,781 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq
# 
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------

import copy
import logging
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

from modules import (
    compute_mask_indices,
    LayerNorm,
    ConvFeatureExtractionModel,
    GradMultiply,
    TransformerEncoder,
    TransformerEncoderBase,

)

# from fairseq.models.transformer import TransformerConfig

logger = logging.getLogger(__name__)

class DictConfig:
    def __init__(self, cfg=None):
        if cfg is not None:
            self.update(cfg)
    
    def update(self, cfg: dict):
        self.__dict__.update(cfg)


class TransformerConfig:
    def __init__(self, cfg=None):
        if cfg is not None:
            self.update(cfg)
    
    def update(self, cfg: dict):
        if 'encoder' in cfg:
            self.encoder = DictConfig(cfg['encoder'])
            del cfg['encoder']
        if 'quant_noise' in cfg:
            self.quant_noise = DictConfig(cfg['quant_noise'])
            del cfg['quant_noise']
        if 'decoder' in cfg:
            del cfg['decoder']
        self.__dict__.update(cfg)


class SpeechLMConfig:
    def __init__(self, cfg=None):
        self.label_rate: int = 50
        self.extractor_mode: str = "default"     # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)
        self.encoder_layers: int = 12     # num encoder layers in the transformer
        self.encoder_embed_dim: int = 768     # encoder embedding dimension
        self.encoder_embed_dim: int = 768     # encoder embedding dimension
        self.encoder_ffn_embed_dim: int = 3072     # encoder embedding dimension for FFN
        self.encoder_attention_heads: int = 12     # num encoder attention heads
        self.activation_fn: str = "gelu"     # activation function to use
        self.layer_type: str = "transformer"     # layer type in encoder

        # dropouts
        self.dropout: float = 0.1     # dropout probability for the transformer
        self.attention_dropout: float = 0.1     # dropout probability for attention weights
        self.activation_dropout: float = 0.0     # dropout probability after activation in FFN
        self.encoder_layerdrop: float = 0.0     # probability of dropping a tarnsformer layer
        self.dropout_input: float = 0.0     # dropout to apply to the input (after feat extr)
        self.dropout_features: float = 0.0     # dropout to apply to the features (after feat extr)

        self.final_dim: int = 256   # project final representations and targets to this many dimensions
        self.layer_norm_first: bool = False     # apply layernorm first in the transformer
        self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2"     # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]
        self.conv_bias: bool = False     # include bias in conv encoder
        self.feature_grad_mult: float = 1.0     # multiply feature extractor var grads by this

        # masking
        self.mask_length: int = 10     # mask length
        self.mask_prob: float = 0.65     # probability of replacing a token with mask
        self.mask_selection: str = "static"     # how to choose mask length
        self.mask_other: float = 0     # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh
        self.no_mask_overlap: bool = False     # whether to allow masks to overlap
        self.mask_min_space: int = 1     # min space between spans (if no overlap is enabled)


        # channel masking
        self.mask_channel_length: int = 10     # length of the mask for features (channels)
        self.mask_channel_prob: float = 0.0     # probability of replacing a feature with 0
        self.mask_channel_selection: str = "static"     # how to choose mask length for channel masking
        self.mask_channel_other: float = 0     # secondary mask argument (used for more complex distributions), see help in compute_mask_indices
        self.no_mask_channel_overlap: bool = False     # whether to allow channel masks to overlap
        self.mask_channel_min_space: int = 1     # min space between spans (if no overlap is enabled)

        # positional embeddings
        self.conv_pos: int = 128     # number of filters for convolutional positional embeddings
        self.conv_pos_groups: int = 16     # number of groups for convolutional positional embedding

        # loss computation
        self.skip_masked: bool = False  # skip computing losses over masked frames
        self.skip_nomask: bool = False  # skip computing losses over unmasked frames
        self.checkpoint_activations: bool = False   # recompute activations and save memory for extra compute
        
        # FP16 optimization
        self.required_seq_len_multiple: int = 2     # pad the input to encoder such that the sequence length is divisible by multiple

        # Custom
        self.use_rel_pos_enc: bool = False  # whether to use relative positional encoding
        self.scaling_for_att: float = 1.0   # scaling for attention weights to prevent overflow issue (for large model)

        # unit encoder-decoder
        self.add_unit_encoder: bool = False # add unit encoder

        # embedding mixing
        self.mix_with_unit: bool = True # mix with the unit embeddings
        self.use_pred_unit: bool = False    # use the embeddings of predicted units
        self.l2_embedding: bool = False # compute l2 loss between unit embedding and unit hidden state
        
        if cfg is not None:
            self.update(cfg)
    
    def update(self, cfg: dict):
        model_cfg = copy.deepcopy(cfg)
        self.text_transformer = TransformerConfig(model_cfg['text_transformer'])
        del model_cfg['text_transformer']
        self.__dict__.update(model_cfg)

class SpeechLM(nn.Module):
    def __init__(
        self,
        cfg: SpeechLMConfig,
    ) -> None:
        super().__init__()
        self.cfg = cfg

        feature_enc_layers = eval(cfg.conv_feature_layers)  # noqa
        self.embed = feature_enc_layers[-1][0]

        self.feature_extractor = ConvFeatureExtractionModel(
            conv_layers=feature_enc_layers,
            dropout=0.0,
            mode=cfg.extractor_mode,
            conv_bias=cfg.conv_bias,
        )
        sample_rate = 16000
        feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers])
        self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / sample_rate

        self.post_extract_proj = (
            nn.Linear(self.embed, cfg.encoder_embed_dim)
            if self.embed != cfg.encoder_embed_dim
            else None
        )

        self.mask_prob = cfg.mask_prob
        self.mask_selection = cfg.mask_selection
        self.mask_other = cfg.mask_other
        self.mask_length = cfg.mask_length
        self.no_mask_overlap = cfg.no_mask_overlap
        self.mask_min_space = cfg.mask_min_space

        self.mask_channel_prob = cfg.mask_channel_prob
        self.mask_channel_selection = cfg.mask_channel_selection
        self.mask_channel_other = cfg.mask_channel_other
        self.mask_channel_length = cfg.mask_channel_length
        self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
        self.mask_channel_min_space = cfg.mask_channel_min_space

        self.dropout_input = nn.Dropout(cfg.dropout_input)
        self.dropout_features = nn.Dropout(cfg.dropout_features)

        self.feature_grad_mult = cfg.feature_grad_mult
        self.logit_temp = cfg.logit_temp
        self.skip_masked = cfg.skip_masked
        self.skip_nomask = cfg.skip_nomask

        self.final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim
        self.final_proj_list = nn.ModuleList([
            nn.Linear(cfg.encoder_embed_dim, self.final_dim) for _ in range(2)
        ])

        self.mask_emb = nn.Parameter(
            torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
        )

        self.encoder = TransformerEncoder(cfg)
        self.layer_norm = LayerNorm(self.embed)

        ### build unit encoder:
        self.mask_u2t = cfg.mask_u2t
        self.compute_mum = cfg.compute_mum
        self.add_text_ctc = cfg.add_text_ctc
        self.text_ctc_conv_kernel = cfg.text_ctc_conv_kernel
        self.padding_idx = 1

        self.add_unit_encoder = cfg.add_unit_encoder
        self.mix_with_unit = cfg.mix_with_unit
        self.use_pred_unit = cfg.use_pred_unit
        self.l2_embedding = cfg.l2_embedding
        if self.add_unit_encoder:
            self.unit_embed_tokens = None
            ### build unit encoder
            self.unit_encoder = TransformerEncoderBase(
                cfg.text_transformer, 
                dictionary=None, 
                embed_tokens=self.unit_embed_tokens,
                use_rel_pos_enc=cfg.use_rel_pos_enc,
                scaling_for_att=cfg.scaling_for_att,
            )
            
        ### build unit2text decoder, not available for now
        self.add_decoder = cfg.add_decoder

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions."""

        super().upgrade_state_dict_named(state_dict, name)
        return state_dict

    def apply_mask(self, x, padding_mask, target_list):
        B, T, C = x.shape
        if self.mask_prob > 0:
            mask_indices = compute_mask_indices(
                (B, T),
                padding_mask,
                self.mask_prob,
                self.mask_length,
                self.mask_selection,
                self.mask_other,
                min_masks=2,
                no_overlap=self.no_mask_overlap,
                min_space=self.mask_min_space,
            )
            mask_indices = torch.from_numpy(mask_indices).to(x.device)
            x[mask_indices] = self.mask_emb
        else:
            mask_indices = None

        if self.mask_channel_prob > 0:
            mask_channel_indices = compute_mask_indices(
                (B, C),
                None,
                self.mask_channel_prob,
                self.mask_channel_length,
                self.mask_channel_selection,
                self.mask_channel_other,
                no_overlap=self.no_mask_channel_overlap,
                min_space=self.mask_channel_min_space,
            )
            mask_channel_indices = (
                torch.from_numpy(mask_channel_indices)
                .to(x.device)
                .unsqueeze(1)
                .expand(-1, T, -1)
            )
            x[mask_channel_indices] = 0

        return x, mask_indices

    def forward_features(self, source: torch.Tensor) -> torch.Tensor:
        if self.feature_grad_mult > 0:
            features = self.feature_extractor(source)
            if self.feature_grad_mult != 1.0:
                features = GradMultiply.apply(features, self.feature_grad_mult)
        else:
            with torch.no_grad():
                features = self.feature_extractor(source)
        return features

    def forward_targets(
        self,
        features: torch.Tensor,
        target_list: List[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Trim features to ensure labels exist and then get aligned labels
        feat_tsz = features.size(2)
        targ_tsz = min([t.size(1) for t in target_list])
        if self.feat2tar_ratio * feat_tsz > targ_tsz:
            feat_tsz = int(targ_tsz / self.feat2tar_ratio)
            features = features[..., :feat_tsz]
        target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio
        target_inds += np.random.choice(int(self.feat2tar_ratio))
        target_list = [t[:, target_inds.long()] for t in target_list]
        return features, target_list

    def forward_padding_mask(
        self,
        features: torch.Tensor,
        padding_mask: torch.Tensor,
    ) -> torch.Tensor:
        extra = padding_mask.size(1) % features.size(1)
        if extra > 0:
            padding_mask = padding_mask[:, :-extra]
        padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1)
        padding_mask = padding_mask.all(-1)
        return padding_mask

    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
        lprobs.batch_first = True
        return lprobs

    def downsample_ctc_padding_mask(self, padding_mask):
        """
        padding_mask: (B, T)
        """
        stride = self.text_ctc_conv_kernel // 2
        return padding_mask[:, ::stride]
    
    def compute_pred(self, proj_x, label_embs):
        if self.target_glu:
            label_embs = self.target_glu(label_embs)
        x = F.normalize(proj_x.float(), dim=-1)                 # (S, D)
        label_embs = F.normalize(label_embs.float(), dim=-1)    # (C, D)
        logits = torch.matmul(x, label_embs.T).type_as(proj_x)  # (S, C)
        logits /= self.logit_temp
        return logits

    def compute_hubert_logits(self, x, target, proj, label_embs, padding_mask, mask_indices):
        if not self.skip_masked:
            masked_indices = torch.logical_and(~padding_mask, mask_indices)
            proj_x_m = proj(x[masked_indices])
            logit_m_list = [(self.compute_pred(proj_x_m, label_embs), target[masked_indices])]
        else:
            logit_m_list = [None]

        if not self.skip_nomask:
            nomask_indices = torch.logical_and(~padding_mask, ~mask_indices)
            proj_x_u = proj(x[nomask_indices])
            logit_u_list = [(self.compute_pred(proj_x_u, label_embs), target[nomask_indices])]
        else:
            logit_u_list = [None]

        return logit_m_list, logit_u_list

    def convert_embeddings(self,
        x,
        padding_mask,
        target=None,
        mask_indices=None,
        mix_with_unit=False,
        use_pred_unit=False,
        l2_embedding=False,
        remask=False
    ):
        """
        1. Mix with units if needed (default: True)
        2. Prepare for unit_encoder inputs
        Inputs:
            x, (B, T, D)
        Return:
            src_tokens, (B, T)
            soft_embeddings, (B, T, D)
            l2_loss, a loss
        """
        soft_embeddings = self.final_proj_list[0](x) if x.size(-1) == self.final_dim else x
        if padding_mask is None:
            padding_mask = soft_embeddings.new_zeros(soft_embeddings.size(0), soft_embeddings.size(1), dtype=torch.long)
        if use_pred_unit:
            src_tokens = self.compute_pred(self.final_proj_list[0](x), self.label_embs_list[0]).argmax(dim=-1)
            src_tokens[padding_mask] = self.padding_idx
        elif target is not None:
            src_tokens = target
        else:
            src_tokens = padding_mask.long()

        if l2_embedding | mix_with_unit:
            unit_embeddings = self.unit_embed_tokens(src_tokens)    # (B, T, D)
        
        l2_loss = 0
        if l2_embedding:
            if mask_indices is not None:
                l2_loss = (soft_embeddings - unit_embeddings)[mask_indices].float().pow(2).mean(dim=-1)
                scale = unit_embeddings[mask_indices].float().pow(2).sum(dim=-1)
            else:
                l2_loss = (soft_embeddings - unit_embeddings).float().pow(2).mean(dim=-1)
                scale = unit_embeddings.float().pow(2).sum(dim=-1)
            l2_loss = (l2_loss / scale).mean()

        if mix_with_unit:
            B, T, D = x.shape
            selected_indices = compute_mask_indices(
                (B, T),
                padding_mask,
                self.mask_prob / 2,
                self.mask_length // 2,
                self.mask_selection,
                self.mask_other,
                min_masks=2,
                no_overlap=self.no_mask_overlap,
                min_space=self.mask_min_space,
            )
            selected_indices = torch.from_numpy(selected_indices).to(x.device)
            if mask_indices is not None:
                if remask:
                    remask_indices = torch.logical_and(selected_indices, mask_indices)
                    soft_embeddings[remask_indices] = self.mask_emb
                swap_indices = torch.logical_and(selected_indices, ~mask_indices)
            else:
                swap_indices = selected_indices
            soft_embeddings[swap_indices] = unit_embeddings[swap_indices]

        soft_embeddings = soft_embeddings * (1 - padding_mask.unsqueeze(-1).type_as(x))
        return src_tokens, soft_embeddings, l2_loss

    def forward(
        self,
        source: torch.Tensor = None,
        src_tokens: torch.Tensor = None,
        src_lengths: torch.Tensor = None,
        target_list: Optional[List[torch.Tensor]] = None,
        padding_mask: Optional[torch.Tensor] = None,
        mask: bool = True,
        features_only: bool = False,
        output_layer: Optional[int] = None,
    ) -> Dict[str, torch.Tensor]:
        assert source is not None or src_tokens is not None
        if source is not None:
            return self.forward_speech(
                source=source,
                target_list=target_list,
                padding_mask=padding_mask,
                mask=mask,
                features_only=features_only,
                output_layer=output_layer,
            )
        else:
            return self.forward_text(
                src_tokens=src_tokens,
                src_lengths=src_lengths,
                mask=self.mask_u2t,
                output_layer=output_layer,
            )
    
    def forward_speech(
        self,
        source: torch.Tensor = None,
        target_list: Optional[List[torch.Tensor]] = None,
        padding_mask: Optional[torch.Tensor] = None,
        mask: bool = True,
        features_only: bool = False,
        output_layer: Optional[int] = None,
    ) -> Dict[str, torch.Tensor]:
        """output layer is 1-based"""
        features = self.forward_features(source)
        if target_list is not None:
            features, target_list = self.forward_targets(features, target_list)

        features_pen = features.float().pow(2).mean()

        features = features.transpose(1, 2)
        features = self.layer_norm(features)
        unmasked_features = features.clone()

        if padding_mask is not None:
            padding_mask = self.forward_padding_mask(features, padding_mask)

        if self.post_extract_proj is not None:
            features = self.post_extract_proj(features)

        features = self.dropout_input(features)
        unmasked_features = self.dropout_features(unmasked_features)

        if mask:
            x, mask_indices = self.apply_mask(features, padding_mask, target_list)
        else:
            x = features
            mask_indices = None

        # feature: (B, T, D), float
        # target: (B, T), long
        # x: (B, T, D), float
        # padding_mask: (B, T), bool
        # mask_indices: (B, T), bool
        x, layer_results = self.encoder(
            x,
            padding_mask=padding_mask,
            layer=None if output_layer is None else output_layer - 1,
        )

        if features_only:
            return {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
        
        logit_m_list, logit_u_list = self.compute_hubert_logits(
            x,
            target_list[0],
            self.final_proj_list[0],
            self.label_embs_list[0],
            padding_mask,
            mask_indices,
        )

        result = {
            "logit_m_list": logit_m_list,
            "logit_u_list": logit_u_list,
            "padding_mask": padding_mask,
            "features_pen": features_pen,
        }
        
        if self.add_unit_encoder:
            src_tokens, x_emb, l2_loss = self.convert_embeddings(
                x, 
                padding_mask, target_list[0],
                mask_indices=mask_indices,
                mix_with_unit=self.mix_with_unit,
                use_pred_unit=self.use_pred_unit,
                l2_embedding=self.l2_embedding,
            )
            encoder_out = self.unit_encoder(src_tokens, token_embeddings=x_emb)

            result['encoder_out'] = encoder_out['encoder_out']  # [(T, B, D)]
            result['encoder_padding_mask'] = encoder_out['encoder_padding_mask']    # [(B, T)]
            if self.l2_embedding:
                result['embedding_l2_loss'] = l2_loss

            code_logit_m_list, code_logit_u_list = self.compute_hubert_logits(
                encoder_out['encoder_out'][0].transpose(0, 1), 
                target_list[-1], 
                self.final_proj_list[-1], 
                self.label_embs_list[-1],
                padding_mask,
                mask_indices,
            )
            result['logit_m_list'] += code_logit_m_list
            result['logit_u_list'] += code_logit_u_list
        return result

    def forward_text(
        self,
        src_tokens: torch.Tensor = None,
        src_lengths: torch.Tensor = None,
        target_list: Optional[List[torch.Tensor]] = None,
        mask: bool = True,
        output_layer: Optional[int] = None,
    ) -> Dict[str, torch.Tensor]:
        assert self.add_unit_encoder, f"Can not forward unit-text branch without unit_encoder!"

        padding_mask = src_tokens == self.padding_idx
        unit_embeddings = self.unit_embed_tokens(src_tokens)
        if mask:
            unit_embeddings, mask_indices = self.apply_mask(unit_embeddings, padding_mask, [src_tokens])
        else:
            ### If already applied mask on src_tokens, then the target_list should contains many padding_idx
            mask_indices = target_list[-1] != self.padding_idx
            unit_embeddings[mask_indices] = self.mask_emb
        
        encoder_out = self.unit_encoder(
            src_tokens,
            token_embeddings=unit_embeddings,
            return_all_hiddens=output_layer is not None,
        )

        result = {}
        result["encoder_out"] = encoder_out["encoder_out"]
        result["encoder_states"] = encoder_out["encoder_states"]
        result["padding_mask"] = padding_mask

        if self.compute_mum:
            code_logit_m_list, code_logit_u_list = self.compute_hubert_logits(
                encoder_out["encoder_out"].transpose(0, 1), 
                target_list[-1], 
                self.final_proj_list[-1], 
                self.label_embs_list[-1],
                padding_mask,
                mask_indices,
            )
            result["logit_m_list"] = code_logit_m_list
            result["logit_u_list"] = code_logit_u_list
        
        if self.add_text_ctc:
            result["encoder_out_ctc"] = [self.unit_encoder_ctc_head(x) for x in encoder_out['encoder_out']]
            result["encoder_padding_mask"] = [
                self.downsample_ctc_padding_mask(padding_mask) for padding_mask in encoder_out['encoder_padding_mask']
            ]
        return result

    def extract_features(
        self,
        source: torch.Tensor,
        padding_mask: Optional[torch.Tensor] = None,
        mask: bool = False,
        ret_conv: bool = False,
        output_layer: Optional[int] = None,
        ret_layer_results: bool = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Extract features for only speech input"""
        with torch.no_grad():
            res = self.forward(
                source,
                padding_mask=padding_mask,
                mask=mask,
                features_only=True,
                output_layer=output_layer,
            )
            # {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}

            x = res["x"] # B x T x D
            padding_mask = res["padding_mask"]
            if self.add_unit_encoder and (output_layer is None or output_layer > self.cfg.encoder_layers):
                src_tokens, x, _ = self.convert_embeddings(
                    x,
                    padding_mask,
                    mix_with_unit=False,
                    use_pred_unit=False,
                )
                return_all_hiddens=output_layer is not None and output_layer > self.cfg.encoder_layers
                encoder_out = self.unit_encoder(
                    src_tokens,
                    token_embeddings=x,
                    return_all_hiddens=return_all_hiddens,
                )
                res["x"] = encoder_out['encoder_out'][0].transpose(0, 1)  # (B, T, D)
                if return_all_hiddens:
                    res["layer_results"] += encoder_out['encoder_states'][1:1+output_layer-len(res["layer_results"])]
            
            feature = res["features"] if ret_conv else res["x"]
            if ret_layer_results:
                feature = (feature, res["layer_results"])

            return feature, padding_mask

    def get_logits(self, net_output, is_masked=True):
        if is_masked:
            logits_list = net_output["logit_m_list"]
        else:
            logits_list = net_output["logit_u_list"]
        logits_list = [x[0].float() for x in logits_list if x is not None]
        return logits_list

    def get_targets(self, net_output, is_masked=True):
        if is_masked:
            logits_list = net_output["logit_m_list"]
        else:
            logits_list = net_output["logit_u_list"]
        targets_list = [x[1].long() for x in logits_list if x is not None]
        return targets_list

    def get_extra_losses(self, net_output):
        extra_losses = []
        names = []

        if "features_pen" in net_output:
            extra_losses.append(net_output["features_pen"])
            names.append("features_pen")

        if "embedding_l2_loss" in net_output:
            extra_losses.append(net_output["embedding_l2_loss"])
            names.append("embedding_l2_loss")

        return extra_losses, names

    def remove_pretraining_modules(self, step2=False):
        self.target_glu = None