Spaces:
Runtime error
Runtime error
File size: 26,781 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq
#
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------
import copy
import logging
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from modules import (
compute_mask_indices,
LayerNorm,
ConvFeatureExtractionModel,
GradMultiply,
TransformerEncoder,
TransformerEncoderBase,
)
# from fairseq.models.transformer import TransformerConfig
logger = logging.getLogger(__name__)
class DictConfig:
def __init__(self, cfg=None):
if cfg is not None:
self.update(cfg)
def update(self, cfg: dict):
self.__dict__.update(cfg)
class TransformerConfig:
def __init__(self, cfg=None):
if cfg is not None:
self.update(cfg)
def update(self, cfg: dict):
if 'encoder' in cfg:
self.encoder = DictConfig(cfg['encoder'])
del cfg['encoder']
if 'quant_noise' in cfg:
self.quant_noise = DictConfig(cfg['quant_noise'])
del cfg['quant_noise']
if 'decoder' in cfg:
del cfg['decoder']
self.__dict__.update(cfg)
class SpeechLMConfig:
def __init__(self, cfg=None):
self.label_rate: int = 50
self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)
self.encoder_layers: int = 12 # num encoder layers in the transformer
self.encoder_embed_dim: int = 768 # encoder embedding dimension
self.encoder_embed_dim: int = 768 # encoder embedding dimension
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
self.encoder_attention_heads: int = 12 # num encoder attention heads
self.activation_fn: str = "gelu" # activation function to use
self.layer_type: str = "transformer" # layer type in encoder
# dropouts
self.dropout: float = 0.1 # dropout probability for the transformer
self.attention_dropout: float = 0.1 # dropout probability for attention weights
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr)
self.final_dim: int = 256 # project final representations and targets to this many dimensions
self.layer_norm_first: bool = False # apply layernorm first in the transformer
self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]
self.conv_bias: bool = False # include bias in conv encoder
self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this
# masking
self.mask_length: int = 10 # mask length
self.mask_prob: float = 0.65 # probability of replacing a token with mask
self.mask_selection: str = "static" # how to choose mask length
self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh
self.no_mask_overlap: bool = False # whether to allow masks to overlap
self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled)
# channel masking
self.mask_channel_length: int = 10 # length of the mask for features (channels)
self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0
self.mask_channel_selection: str = "static" # how to choose mask length for channel masking
self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices
self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap
self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled)
# positional embeddings
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
# loss computation
self.skip_masked: bool = False # skip computing losses over masked frames
self.skip_nomask: bool = False # skip computing losses over unmasked frames
self.checkpoint_activations: bool = False # recompute activations and save memory for extra compute
# FP16 optimization
self.required_seq_len_multiple: int = 2 # pad the input to encoder such that the sequence length is divisible by multiple
# Custom
self.use_rel_pos_enc: bool = False # whether to use relative positional encoding
self.scaling_for_att: float = 1.0 # scaling for attention weights to prevent overflow issue (for large model)
# unit encoder-decoder
self.add_unit_encoder: bool = False # add unit encoder
# embedding mixing
self.mix_with_unit: bool = True # mix with the unit embeddings
self.use_pred_unit: bool = False # use the embeddings of predicted units
self.l2_embedding: bool = False # compute l2 loss between unit embedding and unit hidden state
if cfg is not None:
self.update(cfg)
def update(self, cfg: dict):
model_cfg = copy.deepcopy(cfg)
self.text_transformer = TransformerConfig(model_cfg['text_transformer'])
del model_cfg['text_transformer']
self.__dict__.update(model_cfg)
class SpeechLM(nn.Module):
def __init__(
self,
cfg: SpeechLMConfig,
) -> None:
super().__init__()
self.cfg = cfg
feature_enc_layers = eval(cfg.conv_feature_layers) # noqa
self.embed = feature_enc_layers[-1][0]
self.feature_extractor = ConvFeatureExtractionModel(
conv_layers=feature_enc_layers,
dropout=0.0,
mode=cfg.extractor_mode,
conv_bias=cfg.conv_bias,
)
sample_rate = 16000
feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers])
self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / sample_rate
self.post_extract_proj = (
nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim
else None
)
self.mask_prob = cfg.mask_prob
self.mask_selection = cfg.mask_selection
self.mask_other = cfg.mask_other
self.mask_length = cfg.mask_length
self.no_mask_overlap = cfg.no_mask_overlap
self.mask_min_space = cfg.mask_min_space
self.mask_channel_prob = cfg.mask_channel_prob
self.mask_channel_selection = cfg.mask_channel_selection
self.mask_channel_other = cfg.mask_channel_other
self.mask_channel_length = cfg.mask_channel_length
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
self.mask_channel_min_space = cfg.mask_channel_min_space
self.dropout_input = nn.Dropout(cfg.dropout_input)
self.dropout_features = nn.Dropout(cfg.dropout_features)
self.feature_grad_mult = cfg.feature_grad_mult
self.logit_temp = cfg.logit_temp
self.skip_masked = cfg.skip_masked
self.skip_nomask = cfg.skip_nomask
self.final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim
self.final_proj_list = nn.ModuleList([
nn.Linear(cfg.encoder_embed_dim, self.final_dim) for _ in range(2)
])
self.mask_emb = nn.Parameter(
torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
)
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
### build unit encoder:
self.mask_u2t = cfg.mask_u2t
self.compute_mum = cfg.compute_mum
self.add_text_ctc = cfg.add_text_ctc
self.text_ctc_conv_kernel = cfg.text_ctc_conv_kernel
self.padding_idx = 1
self.add_unit_encoder = cfg.add_unit_encoder
self.mix_with_unit = cfg.mix_with_unit
self.use_pred_unit = cfg.use_pred_unit
self.l2_embedding = cfg.l2_embedding
if self.add_unit_encoder:
self.unit_embed_tokens = None
### build unit encoder
self.unit_encoder = TransformerEncoderBase(
cfg.text_transformer,
dictionary=None,
embed_tokens=self.unit_embed_tokens,
use_rel_pos_enc=cfg.use_rel_pos_enc,
scaling_for_att=cfg.scaling_for_att,
)
### build unit2text decoder, not available for now
self.add_decoder = cfg.add_decoder
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions."""
super().upgrade_state_dict_named(state_dict, name)
return state_dict
def apply_mask(self, x, padding_mask, target_list):
B, T, C = x.shape
if self.mask_prob > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x[mask_indices] = self.mask_emb
else:
mask_indices = None
if self.mask_channel_prob > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
return x, mask_indices
def forward_features(self, source: torch.Tensor) -> torch.Tensor:
if self.feature_grad_mult > 0:
features = self.feature_extractor(source)
if self.feature_grad_mult != 1.0:
features = GradMultiply.apply(features, self.feature_grad_mult)
else:
with torch.no_grad():
features = self.feature_extractor(source)
return features
def forward_targets(
self,
features: torch.Tensor,
target_list: List[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Trim features to ensure labels exist and then get aligned labels
feat_tsz = features.size(2)
targ_tsz = min([t.size(1) for t in target_list])
if self.feat2tar_ratio * feat_tsz > targ_tsz:
feat_tsz = int(targ_tsz / self.feat2tar_ratio)
features = features[..., :feat_tsz]
target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio
target_inds += np.random.choice(int(self.feat2tar_ratio))
target_list = [t[:, target_inds.long()] for t in target_list]
return features, target_list
def forward_padding_mask(
self,
features: torch.Tensor,
padding_mask: torch.Tensor,
) -> torch.Tensor:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1)
padding_mask = padding_mask.all(-1)
return padding_mask
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
lprobs.batch_first = True
return lprobs
def downsample_ctc_padding_mask(self, padding_mask):
"""
padding_mask: (B, T)
"""
stride = self.text_ctc_conv_kernel // 2
return padding_mask[:, ::stride]
def compute_pred(self, proj_x, label_embs):
if self.target_glu:
label_embs = self.target_glu(label_embs)
x = F.normalize(proj_x.float(), dim=-1) # (S, D)
label_embs = F.normalize(label_embs.float(), dim=-1) # (C, D)
logits = torch.matmul(x, label_embs.T).type_as(proj_x) # (S, C)
logits /= self.logit_temp
return logits
def compute_hubert_logits(self, x, target, proj, label_embs, padding_mask, mask_indices):
if not self.skip_masked:
masked_indices = torch.logical_and(~padding_mask, mask_indices)
proj_x_m = proj(x[masked_indices])
logit_m_list = [(self.compute_pred(proj_x_m, label_embs), target[masked_indices])]
else:
logit_m_list = [None]
if not self.skip_nomask:
nomask_indices = torch.logical_and(~padding_mask, ~mask_indices)
proj_x_u = proj(x[nomask_indices])
logit_u_list = [(self.compute_pred(proj_x_u, label_embs), target[nomask_indices])]
else:
logit_u_list = [None]
return logit_m_list, logit_u_list
def convert_embeddings(self,
x,
padding_mask,
target=None,
mask_indices=None,
mix_with_unit=False,
use_pred_unit=False,
l2_embedding=False,
remask=False
):
"""
1. Mix with units if needed (default: True)
2. Prepare for unit_encoder inputs
Inputs:
x, (B, T, D)
Return:
src_tokens, (B, T)
soft_embeddings, (B, T, D)
l2_loss, a loss
"""
soft_embeddings = self.final_proj_list[0](x) if x.size(-1) == self.final_dim else x
if padding_mask is None:
padding_mask = soft_embeddings.new_zeros(soft_embeddings.size(0), soft_embeddings.size(1), dtype=torch.long)
if use_pred_unit:
src_tokens = self.compute_pred(self.final_proj_list[0](x), self.label_embs_list[0]).argmax(dim=-1)
src_tokens[padding_mask] = self.padding_idx
elif target is not None:
src_tokens = target
else:
src_tokens = padding_mask.long()
if l2_embedding | mix_with_unit:
unit_embeddings = self.unit_embed_tokens(src_tokens) # (B, T, D)
l2_loss = 0
if l2_embedding:
if mask_indices is not None:
l2_loss = (soft_embeddings - unit_embeddings)[mask_indices].float().pow(2).mean(dim=-1)
scale = unit_embeddings[mask_indices].float().pow(2).sum(dim=-1)
else:
l2_loss = (soft_embeddings - unit_embeddings).float().pow(2).mean(dim=-1)
scale = unit_embeddings.float().pow(2).sum(dim=-1)
l2_loss = (l2_loss / scale).mean()
if mix_with_unit:
B, T, D = x.shape
selected_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob / 2,
self.mask_length // 2,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
selected_indices = torch.from_numpy(selected_indices).to(x.device)
if mask_indices is not None:
if remask:
remask_indices = torch.logical_and(selected_indices, mask_indices)
soft_embeddings[remask_indices] = self.mask_emb
swap_indices = torch.logical_and(selected_indices, ~mask_indices)
else:
swap_indices = selected_indices
soft_embeddings[swap_indices] = unit_embeddings[swap_indices]
soft_embeddings = soft_embeddings * (1 - padding_mask.unsqueeze(-1).type_as(x))
return src_tokens, soft_embeddings, l2_loss
def forward(
self,
source: torch.Tensor = None,
src_tokens: torch.Tensor = None,
src_lengths: torch.Tensor = None,
target_list: Optional[List[torch.Tensor]] = None,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = True,
features_only: bool = False,
output_layer: Optional[int] = None,
) -> Dict[str, torch.Tensor]:
assert source is not None or src_tokens is not None
if source is not None:
return self.forward_speech(
source=source,
target_list=target_list,
padding_mask=padding_mask,
mask=mask,
features_only=features_only,
output_layer=output_layer,
)
else:
return self.forward_text(
src_tokens=src_tokens,
src_lengths=src_lengths,
mask=self.mask_u2t,
output_layer=output_layer,
)
def forward_speech(
self,
source: torch.Tensor = None,
target_list: Optional[List[torch.Tensor]] = None,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = True,
features_only: bool = False,
output_layer: Optional[int] = None,
) -> Dict[str, torch.Tensor]:
"""output layer is 1-based"""
features = self.forward_features(source)
if target_list is not None:
features, target_list = self.forward_targets(features, target_list)
features_pen = features.float().pow(2).mean()
features = features.transpose(1, 2)
features = self.layer_norm(features)
unmasked_features = features.clone()
if padding_mask is not None:
padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
features = self.dropout_input(features)
unmasked_features = self.dropout_features(unmasked_features)
if mask:
x, mask_indices = self.apply_mask(features, padding_mask, target_list)
else:
x = features
mask_indices = None
# feature: (B, T, D), float
# target: (B, T), long
# x: (B, T, D), float
# padding_mask: (B, T), bool
# mask_indices: (B, T), bool
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
layer=None if output_layer is None else output_layer - 1,
)
if features_only:
return {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
logit_m_list, logit_u_list = self.compute_hubert_logits(
x,
target_list[0],
self.final_proj_list[0],
self.label_embs_list[0],
padding_mask,
mask_indices,
)
result = {
"logit_m_list": logit_m_list,
"logit_u_list": logit_u_list,
"padding_mask": padding_mask,
"features_pen": features_pen,
}
if self.add_unit_encoder:
src_tokens, x_emb, l2_loss = self.convert_embeddings(
x,
padding_mask, target_list[0],
mask_indices=mask_indices,
mix_with_unit=self.mix_with_unit,
use_pred_unit=self.use_pred_unit,
l2_embedding=self.l2_embedding,
)
encoder_out = self.unit_encoder(src_tokens, token_embeddings=x_emb)
result['encoder_out'] = encoder_out['encoder_out'] # [(T, B, D)]
result['encoder_padding_mask'] = encoder_out['encoder_padding_mask'] # [(B, T)]
if self.l2_embedding:
result['embedding_l2_loss'] = l2_loss
code_logit_m_list, code_logit_u_list = self.compute_hubert_logits(
encoder_out['encoder_out'][0].transpose(0, 1),
target_list[-1],
self.final_proj_list[-1],
self.label_embs_list[-1],
padding_mask,
mask_indices,
)
result['logit_m_list'] += code_logit_m_list
result['logit_u_list'] += code_logit_u_list
return result
def forward_text(
self,
src_tokens: torch.Tensor = None,
src_lengths: torch.Tensor = None,
target_list: Optional[List[torch.Tensor]] = None,
mask: bool = True,
output_layer: Optional[int] = None,
) -> Dict[str, torch.Tensor]:
assert self.add_unit_encoder, f"Can not forward unit-text branch without unit_encoder!"
padding_mask = src_tokens == self.padding_idx
unit_embeddings = self.unit_embed_tokens(src_tokens)
if mask:
unit_embeddings, mask_indices = self.apply_mask(unit_embeddings, padding_mask, [src_tokens])
else:
### If already applied mask on src_tokens, then the target_list should contains many padding_idx
mask_indices = target_list[-1] != self.padding_idx
unit_embeddings[mask_indices] = self.mask_emb
encoder_out = self.unit_encoder(
src_tokens,
token_embeddings=unit_embeddings,
return_all_hiddens=output_layer is not None,
)
result = {}
result["encoder_out"] = encoder_out["encoder_out"]
result["encoder_states"] = encoder_out["encoder_states"]
result["padding_mask"] = padding_mask
if self.compute_mum:
code_logit_m_list, code_logit_u_list = self.compute_hubert_logits(
encoder_out["encoder_out"].transpose(0, 1),
target_list[-1],
self.final_proj_list[-1],
self.label_embs_list[-1],
padding_mask,
mask_indices,
)
result["logit_m_list"] = code_logit_m_list
result["logit_u_list"] = code_logit_u_list
if self.add_text_ctc:
result["encoder_out_ctc"] = [self.unit_encoder_ctc_head(x) for x in encoder_out['encoder_out']]
result["encoder_padding_mask"] = [
self.downsample_ctc_padding_mask(padding_mask) for padding_mask in encoder_out['encoder_padding_mask']
]
return result
def extract_features(
self,
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = False,
ret_conv: bool = False,
output_layer: Optional[int] = None,
ret_layer_results: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Extract features for only speech input"""
with torch.no_grad():
res = self.forward(
source,
padding_mask=padding_mask,
mask=mask,
features_only=True,
output_layer=output_layer,
)
# {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
x = res["x"] # B x T x D
padding_mask = res["padding_mask"]
if self.add_unit_encoder and (output_layer is None or output_layer > self.cfg.encoder_layers):
src_tokens, x, _ = self.convert_embeddings(
x,
padding_mask,
mix_with_unit=False,
use_pred_unit=False,
)
return_all_hiddens=output_layer is not None and output_layer > self.cfg.encoder_layers
encoder_out = self.unit_encoder(
src_tokens,
token_embeddings=x,
return_all_hiddens=return_all_hiddens,
)
res["x"] = encoder_out['encoder_out'][0].transpose(0, 1) # (B, T, D)
if return_all_hiddens:
res["layer_results"] += encoder_out['encoder_states'][1:1+output_layer-len(res["layer_results"])]
feature = res["features"] if ret_conv else res["x"]
if ret_layer_results:
feature = (feature, res["layer_results"])
return feature, padding_mask
def get_logits(self, net_output, is_masked=True):
if is_masked:
logits_list = net_output["logit_m_list"]
else:
logits_list = net_output["logit_u_list"]
logits_list = [x[0].float() for x in logits_list if x is not None]
return logits_list
def get_targets(self, net_output, is_masked=True):
if is_masked:
logits_list = net_output["logit_m_list"]
else:
logits_list = net_output["logit_u_list"]
targets_list = [x[1].long() for x in logits_list if x is not None]
return targets_list
def get_extra_losses(self, net_output):
extra_losses = []
names = []
if "features_pen" in net_output:
extra_losses.append(net_output["features_pen"])
names.append("features_pen")
if "embedding_l2_loss" in net_output:
extra_losses.append(net_output["embedding_l2_loss"])
names.append("embedding_l2_loss")
return extra_losses, names
def remove_pretraining_modules(self, step2=False):
self.target_glu = None
|