Spaces:
Sleeping
Sleeping
# Loss functions | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils.general import bbox_iou, bbox_alpha_iou, box_iou, box_giou, box_diou, box_ciou, xywh2xyxy | |
from utils.torch_utils import is_parallel | |
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 | |
# return positive, negative label smoothing BCE targets | |
return 1.0 - 0.5 * eps, 0.5 * eps | |
class BCEBlurWithLogitsLoss(nn.Module): | |
# BCEwithLogitLoss() with reduced missing label effects. | |
def __init__(self, alpha=0.05): | |
super(BCEBlurWithLogitsLoss, self).__init__() | |
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() | |
self.alpha = alpha | |
def forward(self, pred, true): | |
loss = self.loss_fcn(pred, true) | |
pred = torch.sigmoid(pred) # prob from logits | |
dx = pred - true # reduce only missing label effects | |
# dx = (pred - true).abs() # reduce missing label and false label effects | |
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) | |
loss *= alpha_factor | |
return loss.mean() | |
class SigmoidBin(nn.Module): | |
stride = None # strides computed during build | |
export = False # onnx export | |
def __init__(self, bin_count=10, min=0.0, max=1.0, reg_scale = 2.0, use_loss_regression=True, use_fw_regression=True, BCE_weight=1.0, smooth_eps=0.0): | |
super(SigmoidBin, self).__init__() | |
self.bin_count = bin_count | |
self.length = bin_count + 1 | |
self.min = min | |
self.max = max | |
self.scale = float(max - min) | |
self.shift = self.scale / 2.0 | |
self.use_loss_regression = use_loss_regression | |
self.use_fw_regression = use_fw_regression | |
self.reg_scale = reg_scale | |
self.BCE_weight = BCE_weight | |
start = min + (self.scale/2.0) / self.bin_count | |
end = max - (self.scale/2.0) / self.bin_count | |
step = self.scale / self.bin_count | |
self.step = step | |
#print(f" start = {start}, end = {end}, step = {step} ") | |
bins = torch.range(start, end + 0.0001, step).float() | |
self.register_buffer('bins', bins) | |
self.cp = 1.0 - 0.5 * smooth_eps | |
self.cn = 0.5 * smooth_eps | |
self.BCEbins = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([BCE_weight])) | |
self.MSELoss = nn.MSELoss() | |
def get_length(self): | |
return self.length | |
def forward(self, pred): | |
assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length) | |
pred_reg = (pred[..., 0] * self.reg_scale - self.reg_scale/2.0) * self.step | |
pred_bin = pred[..., 1:(1+self.bin_count)] | |
_, bin_idx = torch.max(pred_bin, dim=-1) | |
bin_bias = self.bins[bin_idx] | |
if self.use_fw_regression: | |
result = pred_reg + bin_bias | |
else: | |
result = bin_bias | |
result = result.clamp(min=self.min, max=self.max) | |
return result | |
def training_loss(self, pred, target): | |
assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length) | |
assert pred.shape[0] == target.shape[0], 'pred.shape=%d is not equal to the target.shape=%d' % (pred.shape[0], target.shape[0]) | |
device = pred.device | |
pred_reg = (pred[..., 0].sigmoid() * self.reg_scale - self.reg_scale/2.0) * self.step | |
pred_bin = pred[..., 1:(1+self.bin_count)] | |
diff_bin_target = torch.abs(target[..., None] - self.bins) | |
_, bin_idx = torch.min(diff_bin_target, dim=-1) | |
bin_bias = self.bins[bin_idx] | |
bin_bias.requires_grad = False | |
result = pred_reg + bin_bias | |
target_bins = torch.full_like(pred_bin, self.cn, device=device) # targets | |
n = pred.shape[0] | |
target_bins[range(n), bin_idx] = self.cp | |
loss_bin = self.BCEbins(pred_bin, target_bins) # BCE | |
if self.use_loss_regression: | |
loss_regression = self.MSELoss(result, target) # MSE | |
loss = loss_bin + loss_regression | |
else: | |
loss = loss_bin | |
out_result = result.clamp(min=self.min, max=self.max) | |
return loss, out_result | |
class FocalLoss(nn.Module): | |
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) | |
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): | |
super(FocalLoss, self).__init__() | |
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() | |
self.gamma = gamma | |
self.alpha = alpha | |
self.reduction = loss_fcn.reduction | |
self.loss_fcn.reduction = 'none' # required to apply FL to each element | |
def forward(self, pred, true): | |
loss = self.loss_fcn(pred, true) | |
# p_t = torch.exp(-loss) | |
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability | |
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py | |
pred_prob = torch.sigmoid(pred) # prob from logits | |
p_t = true * pred_prob + (1 - true) * (1 - pred_prob) | |
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) | |
modulating_factor = (1.0 - p_t) ** self.gamma | |
loss *= alpha_factor * modulating_factor | |
if self.reduction == 'mean': | |
return loss.mean() | |
elif self.reduction == 'sum': | |
return loss.sum() | |
else: # 'none' | |
return loss | |
class QFocalLoss(nn.Module): | |
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) | |
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): | |
super(QFocalLoss, self).__init__() | |
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() | |
self.gamma = gamma | |
self.alpha = alpha | |
self.reduction = loss_fcn.reduction | |
self.loss_fcn.reduction = 'none' # required to apply FL to each element | |
def forward(self, pred, true): | |
loss = self.loss_fcn(pred, true) | |
pred_prob = torch.sigmoid(pred) # prob from logits | |
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) | |
modulating_factor = torch.abs(true - pred_prob) ** self.gamma | |
loss *= alpha_factor * modulating_factor | |
if self.reduction == 'mean': | |
return loss.mean() | |
elif self.reduction == 'sum': | |
return loss.sum() | |
else: # 'none' | |
return loss | |
class RankSort(torch.autograd.Function): | |
def forward(ctx, logits, targets, delta_RS=0.50, eps=1e-10): | |
classification_grads=torch.zeros(logits.shape).cuda() | |
#Filter fg logits | |
fg_labels = (targets > 0.) | |
fg_logits = logits[fg_labels] | |
fg_targets = targets[fg_labels] | |
fg_num = len(fg_logits) | |
#Do not use bg with scores less than minimum fg logit | |
#since changing its score does not have an effect on precision | |
threshold_logit = torch.min(fg_logits)-delta_RS | |
relevant_bg_labels=((targets==0) & (logits>=threshold_logit)) | |
relevant_bg_logits = logits[relevant_bg_labels] | |
relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda() | |
sorting_error=torch.zeros(fg_num).cuda() | |
ranking_error=torch.zeros(fg_num).cuda() | |
fg_grad=torch.zeros(fg_num).cuda() | |
#sort the fg logits | |
order=torch.argsort(fg_logits) | |
#Loops over each positive following the order | |
for ii in order: | |
# Difference Transforms (x_ij) | |
fg_relations=fg_logits-fg_logits[ii] | |
bg_relations=relevant_bg_logits-fg_logits[ii] | |
if delta_RS > 0: | |
fg_relations=torch.clamp(fg_relations/(2*delta_RS)+0.5,min=0,max=1) | |
bg_relations=torch.clamp(bg_relations/(2*delta_RS)+0.5,min=0,max=1) | |
else: | |
fg_relations = (fg_relations >= 0).float() | |
bg_relations = (bg_relations >= 0).float() | |
# Rank of ii among pos and false positive number (bg with larger scores) | |
rank_pos=torch.sum(fg_relations) | |
FP_num=torch.sum(bg_relations) | |
# Rank of ii among all examples | |
rank=rank_pos+FP_num | |
# Ranking error of example ii. target_ranking_error is always 0. (Eq. 7) | |
ranking_error[ii]=FP_num/rank | |
# Current sorting error of example ii. (Eq. 7) | |
current_sorting_error = torch.sum(fg_relations*(1-fg_targets))/rank_pos | |
#Find examples in the target sorted order for example ii | |
iou_relations = (fg_targets >= fg_targets[ii]) | |
target_sorted_order = iou_relations * fg_relations | |
#The rank of ii among positives in sorted order | |
rank_pos_target = torch.sum(target_sorted_order) | |
#Compute target sorting error. (Eq. 8) | |
#Since target ranking error is 0, this is also total target error | |
target_sorting_error= torch.sum(target_sorted_order*(1-fg_targets))/rank_pos_target | |
#Compute sorting error on example ii | |
sorting_error[ii] = current_sorting_error - target_sorting_error | |
#Identity Update for Ranking Error | |
if FP_num > eps: | |
#For ii the update is the ranking error | |
fg_grad[ii] -= ranking_error[ii] | |
#For negatives, distribute error via ranking pmf (i.e. bg_relations/FP_num) | |
relevant_bg_grad += (bg_relations*(ranking_error[ii]/FP_num)) | |
#Find the positives that are misranked (the cause of the error) | |
#These are the ones with smaller IoU but larger logits | |
missorted_examples = (~ iou_relations) * fg_relations | |
#Denominotor of sorting pmf | |
sorting_pmf_denom = torch.sum(missorted_examples) | |
#Identity Update for Sorting Error | |
if sorting_pmf_denom > eps: | |
#For ii the update is the sorting error | |
fg_grad[ii] -= sorting_error[ii] | |
#For positives, distribute error via sorting pmf (i.e. missorted_examples/sorting_pmf_denom) | |
fg_grad += (missorted_examples*(sorting_error[ii]/sorting_pmf_denom)) | |
#Normalize gradients by number of positives | |
classification_grads[fg_labels]= (fg_grad/fg_num) | |
classification_grads[relevant_bg_labels]= (relevant_bg_grad/fg_num) | |
ctx.save_for_backward(classification_grads) | |
return ranking_error.mean(), sorting_error.mean() | |
def backward(ctx, out_grad1, out_grad2): | |
g1, =ctx.saved_tensors | |
return g1*out_grad1, None, None, None | |
class aLRPLoss(torch.autograd.Function): | |
def forward(ctx, logits, targets, regression_losses, delta=1., eps=1e-5): | |
classification_grads=torch.zeros(logits.shape).cuda() | |
#Filter fg logits | |
fg_labels = (targets == 1) | |
fg_logits = logits[fg_labels] | |
fg_num = len(fg_logits) | |
#Do not use bg with scores less than minimum fg logit | |
#since changing its score does not have an effect on precision | |
threshold_logit = torch.min(fg_logits)-delta | |
#Get valid bg logits | |
relevant_bg_labels=((targets==0)&(logits>=threshold_logit)) | |
relevant_bg_logits=logits[relevant_bg_labels] | |
relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda() | |
rank=torch.zeros(fg_num).cuda() | |
prec=torch.zeros(fg_num).cuda() | |
fg_grad=torch.zeros(fg_num).cuda() | |
max_prec=0 | |
#sort the fg logits | |
order=torch.argsort(fg_logits) | |
#Loops over each positive following the order | |
for ii in order: | |
#x_ij s as score differences with fgs | |
fg_relations=fg_logits-fg_logits[ii] | |
#Apply piecewise linear function and determine relations with fgs | |
fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1) | |
#Discard i=j in the summation in rank_pos | |
fg_relations[ii]=0 | |
#x_ij s as score differences with bgs | |
bg_relations=relevant_bg_logits-fg_logits[ii] | |
#Apply piecewise linear function and determine relations with bgs | |
bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1) | |
#Compute the rank of the example within fgs and number of bgs with larger scores | |
rank_pos=1+torch.sum(fg_relations) | |
FP_num=torch.sum(bg_relations) | |
#Store the total since it is normalizer also for aLRP Regression error | |
rank[ii]=rank_pos+FP_num | |
#Compute precision for this example to compute classification loss | |
prec[ii]=rank_pos/rank[ii] | |
#For stability, set eps to a infinitesmall value (e.g. 1e-6), then compute grads | |
if FP_num > eps: | |
fg_grad[ii] = -(torch.sum(fg_relations*regression_losses)+FP_num)/rank[ii] | |
relevant_bg_grad += (bg_relations*(-fg_grad[ii]/FP_num)) | |
#aLRP with grad formulation fg gradient | |
classification_grads[fg_labels]= fg_grad | |
#aLRP with grad formulation bg gradient | |
classification_grads[relevant_bg_labels]= relevant_bg_grad | |
classification_grads /= (fg_num) | |
cls_loss=1-prec.mean() | |
ctx.save_for_backward(classification_grads) | |
return cls_loss, rank, order | |
def backward(ctx, out_grad1, out_grad2, out_grad3): | |
g1, =ctx.saved_tensors | |
return g1*out_grad1, None, None, None, None | |
class APLoss(torch.autograd.Function): | |
def forward(ctx, logits, targets, delta=1.): | |
classification_grads=torch.zeros(logits.shape).cuda() | |
#Filter fg logits | |
fg_labels = (targets == 1) | |
fg_logits = logits[fg_labels] | |
fg_num = len(fg_logits) | |
#Do not use bg with scores less than minimum fg logit | |
#since changing its score does not have an effect on precision | |
threshold_logit = torch.min(fg_logits)-delta | |
#Get valid bg logits | |
relevant_bg_labels=((targets==0)&(logits>=threshold_logit)) | |
relevant_bg_logits=logits[relevant_bg_labels] | |
relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda() | |
rank=torch.zeros(fg_num).cuda() | |
prec=torch.zeros(fg_num).cuda() | |
fg_grad=torch.zeros(fg_num).cuda() | |
max_prec=0 | |
#sort the fg logits | |
order=torch.argsort(fg_logits) | |
#Loops over each positive following the order | |
for ii in order: | |
#x_ij s as score differences with fgs | |
fg_relations=fg_logits-fg_logits[ii] | |
#Apply piecewise linear function and determine relations with fgs | |
fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1) | |
#Discard i=j in the summation in rank_pos | |
fg_relations[ii]=0 | |
#x_ij s as score differences with bgs | |
bg_relations=relevant_bg_logits-fg_logits[ii] | |
#Apply piecewise linear function and determine relations with bgs | |
bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1) | |
#Compute the rank of the example within fgs and number of bgs with larger scores | |
rank_pos=1+torch.sum(fg_relations) | |
FP_num=torch.sum(bg_relations) | |
#Store the total since it is normalizer also for aLRP Regression error | |
rank[ii]=rank_pos+FP_num | |
#Compute precision for this example | |
current_prec=rank_pos/rank[ii] | |
#Compute interpolated AP and store gradients for relevant bg examples | |
if (max_prec<=current_prec): | |
max_prec=current_prec | |
relevant_bg_grad += (bg_relations/rank[ii]) | |
else: | |
relevant_bg_grad += (bg_relations/rank[ii])*(((1-max_prec)/(1-current_prec))) | |
#Store fg gradients | |
fg_grad[ii]=-(1-max_prec) | |
prec[ii]=max_prec | |
#aLRP with grad formulation fg gradient | |
classification_grads[fg_labels]= fg_grad | |
#aLRP with grad formulation bg gradient | |
classification_grads[relevant_bg_labels]= relevant_bg_grad | |
classification_grads /= fg_num | |
cls_loss=1-prec.mean() | |
ctx.save_for_backward(classification_grads) | |
return cls_loss | |
def backward(ctx, out_grad1): | |
g1, =ctx.saved_tensors | |
return g1*out_grad1, None, None | |
class ComputeLoss: | |
# Compute losses | |
def __init__(self, model, autobalance=False): | |
super(ComputeLoss, self).__init__() | |
device = next(model.parameters()).device # get model device | |
h = model.hyp # hyperparameters | |
# Define criteria | |
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) | |
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) | |
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 | |
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets | |
# Focal loss | |
g = h['fl_gamma'] # focal loss gamma | |
if g > 0: | |
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) | |
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module | |
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 | |
#self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.1, .05]) # P3-P7 | |
#self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.5, 0.4, .1]) # P3-P7 | |
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index | |
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance | |
for k in 'na', 'nc', 'nl', 'anchors': | |
setattr(self, k, getattr(det, k)) | |
def __call__(self, p, targets): # predictions, targets, model | |
device = targets.device | |
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) | |
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets | |
# Losses | |
for i, pi in enumerate(p): # layer index, layer predictions | |
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx | |
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj | |
n = b.shape[0] # number of targets | |
if n: | |
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets | |
# Regression | |
pxy = ps[:, :2].sigmoid() * 2. - 0.5 | |
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] | |
pbox = torch.cat((pxy, pwh), 1) # predicted box | |
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) | |
lbox += (1.0 - iou).mean() # iou loss | |
# Objectness | |
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio | |
# Classification | |
if self.nc > 1: # cls loss (only if multiple classes) | |
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets | |
t[range(n), tcls[i]] = self.cp | |
#t[t==self.cp] = iou.detach().clamp(0).type(t.dtype) | |
lcls += self.BCEcls(ps[:, 5:], t) # BCE | |
# Append targets to text file | |
# with open('targets.txt', 'a') as file: | |
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] | |
obji = self.BCEobj(pi[..., 4], tobj) | |
lobj += obji * self.balance[i] # obj loss | |
if self.autobalance: | |
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() | |
if self.autobalance: | |
self.balance = [x / self.balance[self.ssi] for x in self.balance] | |
lbox *= self.hyp['box'] | |
lobj *= self.hyp['obj'] | |
lcls *= self.hyp['cls'] | |
bs = tobj.shape[0] # batch size | |
loss = lbox + lobj + lcls | |
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() | |
def build_targets(self, p, targets): | |
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) | |
na, nt = self.na, targets.shape[0] # number of anchors, targets | |
tcls, tbox, indices, anch = [], [], [], [] | |
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain | |
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) | |
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices | |
g = 0.5 # bias | |
off = torch.tensor([[0, 0], | |
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m | |
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm | |
], device=targets.device).float() * g # offsets | |
for i in range(self.nl): | |
anchors = self.anchors[i] | |
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain | |
# Match targets to anchors | |
t = targets * gain | |
if nt: | |
# Matches | |
r = t[:, :, 4:6] / anchors[:, None] # wh ratio | |
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare | |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) | |
t = t[j] # filter | |
# Offsets | |
gxy = t[:, 2:4] # grid xy | |
gxi = gain[[2, 3]] - gxy # inverse | |
j, k = ((gxy % 1. < g) & (gxy > 1.)).T | |
l, m = ((gxi % 1. < g) & (gxi > 1.)).T | |
j = torch.stack((torch.ones_like(j), j, k, l, m)) | |
t = t.repeat((5, 1, 1))[j] | |
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] | |
else: | |
t = targets[0] | |
offsets = 0 | |
# Define | |
b, c = t[:, :2].long().T # image, class | |
gxy = t[:, 2:4] # grid xy | |
gwh = t[:, 4:6] # grid wh | |
gij = (gxy - offsets).long() | |
gi, gj = gij.T # grid xy indices | |
# Append | |
a = t[:, 6].long() # anchor indices | |
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices | |
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box | |
anch.append(anchors[a]) # anchors | |
tcls.append(c) # class | |
return tcls, tbox, indices, anch | |
class ComputeLossOTA: | |
# Compute losses | |
def __init__(self, model, autobalance=False): | |
super(ComputeLossOTA, self).__init__() | |
device = next(model.parameters()).device # get model device | |
h = model.hyp # hyperparameters | |
# Define criteria | |
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) | |
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) | |
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 | |
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets | |
# Focal loss | |
g = h['fl_gamma'] # focal loss gamma | |
if g > 0: | |
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) | |
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module | |
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 | |
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index | |
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance | |
for k in 'na', 'nc', 'nl', 'anchors', 'stride': | |
setattr(self, k, getattr(det, k)) | |
def __call__(self, p, targets, imgs): # predictions, targets, model | |
device = targets.device | |
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) | |
bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs) | |
pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p] | |
# Losses | |
for i, pi in enumerate(p): # layer index, layer predictions | |
b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx | |
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj | |
n = b.shape[0] # number of targets | |
if n: | |
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets | |
# Regression | |
grid = torch.stack([gi, gj], dim=1) | |
pxy = ps[:, :2].sigmoid() * 2. - 0.5 | |
#pxy = ps[:, :2].sigmoid() * 3. - 1. | |
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] | |
pbox = torch.cat((pxy, pwh), 1) # predicted box | |
selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i] | |
selected_tbox[:, :2] -= grid | |
iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target) | |
lbox += (1.0 - iou).mean() # iou loss | |
# Objectness | |
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio | |
# Classification | |
selected_tcls = targets[i][:, 1].long() | |
if self.nc > 1: # cls loss (only if multiple classes) | |
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets | |
t[range(n), selected_tcls] = self.cp | |
lcls += self.BCEcls(ps[:, 5:], t) # BCE | |
# Append targets to text file | |
# with open('targets.txt', 'a') as file: | |
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] | |
obji = self.BCEobj(pi[..., 4], tobj) | |
lobj += obji * self.balance[i] # obj loss | |
if self.autobalance: | |
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() | |
if self.autobalance: | |
self.balance = [x / self.balance[self.ssi] for x in self.balance] | |
lbox *= self.hyp['box'] | |
lobj *= self.hyp['obj'] | |
lcls *= self.hyp['cls'] | |
bs = tobj.shape[0] # batch size | |
loss = lbox + lobj + lcls | |
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() | |
def build_targets(self, p, targets, imgs): | |
#indices, anch = self.find_positive(p, targets) | |
indices, anch = self.find_3_positive(p, targets) | |
#indices, anch = self.find_4_positive(p, targets) | |
#indices, anch = self.find_5_positive(p, targets) | |
#indices, anch = self.find_9_positive(p, targets) | |
matching_bs = [[] for pp in p] | |
matching_as = [[] for pp in p] | |
matching_gjs = [[] for pp in p] | |
matching_gis = [[] for pp in p] | |
matching_targets = [[] for pp in p] | |
matching_anchs = [[] for pp in p] | |
nl = len(p) | |
for batch_idx in range(p[0].shape[0]): | |
b_idx = targets[:, 0]==batch_idx | |
this_target = targets[b_idx] | |
if this_target.shape[0] == 0: | |
continue | |
txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] | |
txyxy = xywh2xyxy(txywh) | |
pxyxys = [] | |
p_cls = [] | |
p_obj = [] | |
from_which_layer = [] | |
all_b = [] | |
all_a = [] | |
all_gj = [] | |
all_gi = [] | |
all_anch = [] | |
for i, pi in enumerate(p): | |
b, a, gj, gi = indices[i] | |
idx = (b == batch_idx) | |
b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] | |
all_b.append(b) | |
all_a.append(a) | |
all_gj.append(gj) | |
all_gi.append(gi) | |
all_anch.append(anch[i][idx]) | |
from_which_layer.append(torch.ones(size=(len(b),)) * i) | |
fg_pred = pi[b, a, gj, gi] | |
p_obj.append(fg_pred[:, 4:5]) | |
p_cls.append(fg_pred[:, 5:]) | |
grid = torch.stack([gi, gj], dim=1) | |
pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. | |
#pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i] | |
pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. | |
pxywh = torch.cat([pxy, pwh], dim=-1) | |
pxyxy = xywh2xyxy(pxywh) | |
pxyxys.append(pxyxy) | |
pxyxys = torch.cat(pxyxys, dim=0) | |
if pxyxys.shape[0] == 0: | |
continue | |
p_obj = torch.cat(p_obj, dim=0) | |
p_cls = torch.cat(p_cls, dim=0) | |
from_which_layer = torch.cat(from_which_layer, dim=0) | |
all_b = torch.cat(all_b, dim=0) | |
all_a = torch.cat(all_a, dim=0) | |
all_gj = torch.cat(all_gj, dim=0) | |
all_gi = torch.cat(all_gi, dim=0) | |
all_anch = torch.cat(all_anch, dim=0) | |
pair_wise_iou = box_iou(txyxy, pxyxys) | |
pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) | |
top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1) | |
dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) | |
gt_cls_per_image = ( | |
F.one_hot(this_target[:, 1].to(torch.int64), self.nc) | |
.float() | |
.unsqueeze(1) | |
.repeat(1, pxyxys.shape[0], 1) | |
) | |
num_gt = this_target.shape[0] | |
cls_preds_ = ( | |
p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() | |
* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() | |
) | |
y = cls_preds_.sqrt_() | |
pair_wise_cls_loss = F.binary_cross_entropy_with_logits( | |
torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" | |
).sum(-1) | |
del cls_preds_ | |
cost = ( | |
pair_wise_cls_loss | |
+ 3.0 * pair_wise_iou_loss | |
) | |
matching_matrix = torch.zeros_like(cost) | |
for gt_idx in range(num_gt): | |
_, pos_idx = torch.topk( | |
cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False | |
) | |
matching_matrix[gt_idx][pos_idx] = 1.0 | |
del top_k, dynamic_ks | |
anchor_matching_gt = matching_matrix.sum(0) | |
if (anchor_matching_gt > 1).sum() > 0: | |
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) | |
matching_matrix[:, anchor_matching_gt > 1] *= 0.0 | |
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 | |
fg_mask_inboxes = matching_matrix.sum(0) > 0.0 | |
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) | |
from_which_layer = from_which_layer[fg_mask_inboxes] | |
all_b = all_b[fg_mask_inboxes] | |
all_a = all_a[fg_mask_inboxes] | |
all_gj = all_gj[fg_mask_inboxes] | |
all_gi = all_gi[fg_mask_inboxes] | |
all_anch = all_anch[fg_mask_inboxes] | |
this_target = this_target[matched_gt_inds] | |
for i in range(nl): | |
layer_idx = from_which_layer == i | |
matching_bs[i].append(all_b[layer_idx]) | |
matching_as[i].append(all_a[layer_idx]) | |
matching_gjs[i].append(all_gj[layer_idx]) | |
matching_gis[i].append(all_gi[layer_idx]) | |
matching_targets[i].append(this_target[layer_idx]) | |
matching_anchs[i].append(all_anch[layer_idx]) | |
for i in range(nl): | |
matching_bs[i] = torch.cat(matching_bs[i], dim=0) | |
matching_as[i] = torch.cat(matching_as[i], dim=0) | |
matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) | |
matching_gis[i] = torch.cat(matching_gis[i], dim=0) | |
matching_targets[i] = torch.cat(matching_targets[i], dim=0) | |
matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) | |
return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs | |
def find_3_positive(self, p, targets): | |
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) | |
na, nt = self.na, targets.shape[0] # number of anchors, targets | |
indices, anch = [], [] | |
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain | |
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) | |
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices | |
g = 0.5 # bias | |
off = torch.tensor([[0, 0], | |
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m | |
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm | |
], device=targets.device).float() * g # offsets | |
for i in range(self.nl): | |
anchors = self.anchors[i] | |
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain | |
# Match targets to anchors | |
t = targets * gain | |
if nt: | |
# Matches | |
r = t[:, :, 4:6] / anchors[:, None] # wh ratio | |
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare | |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) | |
t = t[j] # filter | |
# Offsets | |
gxy = t[:, 2:4] # grid xy | |
gxi = gain[[2, 3]] - gxy # inverse | |
j, k = ((gxy % 1. < g) & (gxy > 1.)).T | |
l, m = ((gxi % 1. < g) & (gxi > 1.)).T | |
j = torch.stack((torch.ones_like(j), j, k, l, m)) | |
t = t.repeat((5, 1, 1))[j] | |
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] | |
else: | |
t = targets[0] | |
offsets = 0 | |
# Define | |
b, c = t[:, :2].long().T # image, class | |
gxy = t[:, 2:4] # grid xy | |
gwh = t[:, 4:6] # grid wh | |
gij = (gxy - offsets).long() | |
gi, gj = gij.T # grid xy indices | |
# Append | |
a = t[:, 6].long() # anchor indices | |
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices | |
anch.append(anchors[a]) # anchors | |
return indices, anch | |
class ComputeLossBinOTA: | |
# Compute losses | |
def __init__(self, model, autobalance=False): | |
super(ComputeLossBinOTA, self).__init__() | |
device = next(model.parameters()).device # get model device | |
h = model.hyp # hyperparameters | |
# Define criteria | |
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) | |
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) | |
#MSEangle = nn.MSELoss().to(device) | |
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 | |
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets | |
# Focal loss | |
g = h['fl_gamma'] # focal loss gamma | |
if g > 0: | |
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) | |
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module | |
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 | |
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index | |
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance | |
for k in 'na', 'nc', 'nl', 'anchors', 'stride', 'bin_count': | |
setattr(self, k, getattr(det, k)) | |
#xy_bin_sigmoid = SigmoidBin(bin_count=11, min=-0.5, max=1.5, use_loss_regression=False).to(device) | |
wh_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0, use_loss_regression=False).to(device) | |
#angle_bin_sigmoid = SigmoidBin(bin_count=31, min=-1.1, max=1.1, use_loss_regression=False).to(device) | |
self.wh_bin_sigmoid = wh_bin_sigmoid | |
def __call__(self, p, targets, imgs): # predictions, targets, model | |
device = targets.device | |
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) | |
bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs) | |
pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p] | |
# Losses | |
for i, pi in enumerate(p): # layer index, layer predictions | |
b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx | |
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj | |
obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 # x,y, w-bce, h-bce # xy_bin_sigmoid.get_length()*2 | |
n = b.shape[0] # number of targets | |
if n: | |
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets | |
# Regression | |
grid = torch.stack([gi, gj], dim=1) | |
selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i] | |
selected_tbox[:, :2] -= grid | |
#pxy = ps[:, :2].sigmoid() * 2. - 0.5 | |
##pxy = ps[:, :2].sigmoid() * 3. - 1. | |
#pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] | |
#pbox = torch.cat((pxy, pwh), 1) # predicted box | |
#x_loss, px = xy_bin_sigmoid.training_loss(ps[..., 0:12], tbox[i][..., 0]) | |
#y_loss, py = xy_bin_sigmoid.training_loss(ps[..., 12:24], tbox[i][..., 1]) | |
w_loss, pw = self.wh_bin_sigmoid.training_loss(ps[..., 2:(3+self.bin_count)], selected_tbox[..., 2] / anchors[i][..., 0]) | |
h_loss, ph = self.wh_bin_sigmoid.training_loss(ps[..., (3+self.bin_count):obj_idx], selected_tbox[..., 3] / anchors[i][..., 1]) | |
pw *= anchors[i][..., 0] | |
ph *= anchors[i][..., 1] | |
px = ps[:, 0].sigmoid() * 2. - 0.5 | |
py = ps[:, 1].sigmoid() * 2. - 0.5 | |
lbox += w_loss + h_loss # + x_loss + y_loss | |
#print(f"\n px = {px.shape}, py = {py.shape}, pw = {pw.shape}, ph = {ph.shape} \n") | |
pbox = torch.cat((px.unsqueeze(1), py.unsqueeze(1), pw.unsqueeze(1), ph.unsqueeze(1)), 1).to(device) # predicted box | |
iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target) | |
lbox += (1.0 - iou).mean() # iou loss | |
# Objectness | |
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio | |
# Classification | |
selected_tcls = targets[i][:, 1].long() | |
if self.nc > 1: # cls loss (only if multiple classes) | |
t = torch.full_like(ps[:, (1+obj_idx):], self.cn, device=device) # targets | |
t[range(n), selected_tcls] = self.cp | |
lcls += self.BCEcls(ps[:, (1+obj_idx):], t) # BCE | |
# Append targets to text file | |
# with open('targets.txt', 'a') as file: | |
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] | |
obji = self.BCEobj(pi[..., obj_idx], tobj) | |
lobj += obji * self.balance[i] # obj loss | |
if self.autobalance: | |
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() | |
if self.autobalance: | |
self.balance = [x / self.balance[self.ssi] for x in self.balance] | |
lbox *= self.hyp['box'] | |
lobj *= self.hyp['obj'] | |
lcls *= self.hyp['cls'] | |
bs = tobj.shape[0] # batch size | |
loss = lbox + lobj + lcls | |
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() | |
def build_targets(self, p, targets, imgs): | |
#indices, anch = self.find_positive(p, targets) | |
indices, anch = self.find_3_positive(p, targets) | |
#indices, anch = self.find_4_positive(p, targets) | |
#indices, anch = self.find_5_positive(p, targets) | |
#indices, anch = self.find_9_positive(p, targets) | |
matching_bs = [[] for pp in p] | |
matching_as = [[] for pp in p] | |
matching_gjs = [[] for pp in p] | |
matching_gis = [[] for pp in p] | |
matching_targets = [[] for pp in p] | |
matching_anchs = [[] for pp in p] | |
nl = len(p) | |
for batch_idx in range(p[0].shape[0]): | |
b_idx = targets[:, 0]==batch_idx | |
this_target = targets[b_idx] | |
if this_target.shape[0] == 0: | |
continue | |
txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] | |
txyxy = xywh2xyxy(txywh) | |
pxyxys = [] | |
p_cls = [] | |
p_obj = [] | |
from_which_layer = [] | |
all_b = [] | |
all_a = [] | |
all_gj = [] | |
all_gi = [] | |
all_anch = [] | |
for i, pi in enumerate(p): | |
obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 | |
b, a, gj, gi = indices[i] | |
idx = (b == batch_idx) | |
b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] | |
all_b.append(b) | |
all_a.append(a) | |
all_gj.append(gj) | |
all_gi.append(gi) | |
all_anch.append(anch[i][idx]) | |
from_which_layer.append(torch.ones(size=(len(b),)) * i) | |
fg_pred = pi[b, a, gj, gi] | |
p_obj.append(fg_pred[:, obj_idx:(obj_idx+1)]) | |
p_cls.append(fg_pred[:, (obj_idx+1):]) | |
grid = torch.stack([gi, gj], dim=1) | |
pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. | |
#pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. | |
pw = self.wh_bin_sigmoid.forward(fg_pred[..., 2:(3+self.bin_count)].sigmoid()) * anch[i][idx][:, 0] * self.stride[i] | |
ph = self.wh_bin_sigmoid.forward(fg_pred[..., (3+self.bin_count):obj_idx].sigmoid()) * anch[i][idx][:, 1] * self.stride[i] | |
pxywh = torch.cat([pxy, pw.unsqueeze(1), ph.unsqueeze(1)], dim=-1) | |
pxyxy = xywh2xyxy(pxywh) | |
pxyxys.append(pxyxy) | |
pxyxys = torch.cat(pxyxys, dim=0) | |
if pxyxys.shape[0] == 0: | |
continue | |
p_obj = torch.cat(p_obj, dim=0) | |
p_cls = torch.cat(p_cls, dim=0) | |
from_which_layer = torch.cat(from_which_layer, dim=0) | |
all_b = torch.cat(all_b, dim=0) | |
all_a = torch.cat(all_a, dim=0) | |
all_gj = torch.cat(all_gj, dim=0) | |
all_gi = torch.cat(all_gi, dim=0) | |
all_anch = torch.cat(all_anch, dim=0) | |
pair_wise_iou = box_iou(txyxy, pxyxys) | |
pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) | |
top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1) | |
dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) | |
gt_cls_per_image = ( | |
F.one_hot(this_target[:, 1].to(torch.int64), self.nc) | |
.float() | |
.unsqueeze(1) | |
.repeat(1, pxyxys.shape[0], 1) | |
) | |
num_gt = this_target.shape[0] | |
cls_preds_ = ( | |
p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() | |
* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() | |
) | |
y = cls_preds_.sqrt_() | |
pair_wise_cls_loss = F.binary_cross_entropy_with_logits( | |
torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" | |
).sum(-1) | |
del cls_preds_ | |
cost = ( | |
pair_wise_cls_loss | |
+ 3.0 * pair_wise_iou_loss | |
) | |
matching_matrix = torch.zeros_like(cost) | |
for gt_idx in range(num_gt): | |
_, pos_idx = torch.topk( | |
cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False | |
) | |
matching_matrix[gt_idx][pos_idx] = 1.0 | |
del top_k, dynamic_ks | |
anchor_matching_gt = matching_matrix.sum(0) | |
if (anchor_matching_gt > 1).sum() > 0: | |
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) | |
matching_matrix[:, anchor_matching_gt > 1] *= 0.0 | |
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 | |
fg_mask_inboxes = matching_matrix.sum(0) > 0.0 | |
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) | |
from_which_layer = from_which_layer[fg_mask_inboxes] | |
all_b = all_b[fg_mask_inboxes] | |
all_a = all_a[fg_mask_inboxes] | |
all_gj = all_gj[fg_mask_inboxes] | |
all_gi = all_gi[fg_mask_inboxes] | |
all_anch = all_anch[fg_mask_inboxes] | |
this_target = this_target[matched_gt_inds] | |
for i in range(nl): | |
layer_idx = from_which_layer == i | |
matching_bs[i].append(all_b[layer_idx]) | |
matching_as[i].append(all_a[layer_idx]) | |
matching_gjs[i].append(all_gj[layer_idx]) | |
matching_gis[i].append(all_gi[layer_idx]) | |
matching_targets[i].append(this_target[layer_idx]) | |
matching_anchs[i].append(all_anch[layer_idx]) | |
for i in range(nl): | |
matching_bs[i] = torch.cat(matching_bs[i], dim=0) | |
matching_as[i] = torch.cat(matching_as[i], dim=0) | |
matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) | |
matching_gis[i] = torch.cat(matching_gis[i], dim=0) | |
matching_targets[i] = torch.cat(matching_targets[i], dim=0) | |
matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) | |
return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs | |
def find_3_positive(self, p, targets): | |
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) | |
na, nt = self.na, targets.shape[0] # number of anchors, targets | |
indices, anch = [], [] | |
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain | |
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) | |
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices | |
g = 0.5 # bias | |
off = torch.tensor([[0, 0], | |
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m | |
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm | |
], device=targets.device).float() * g # offsets | |
for i in range(self.nl): | |
anchors = self.anchors[i] | |
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain | |
# Match targets to anchors | |
t = targets * gain | |
if nt: | |
# Matches | |
r = t[:, :, 4:6] / anchors[:, None] # wh ratio | |
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare | |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) | |
t = t[j] # filter | |
# Offsets | |
gxy = t[:, 2:4] # grid xy | |
gxi = gain[[2, 3]] - gxy # inverse | |
j, k = ((gxy % 1. < g) & (gxy > 1.)).T | |
l, m = ((gxi % 1. < g) & (gxi > 1.)).T | |
j = torch.stack((torch.ones_like(j), j, k, l, m)) | |
t = t.repeat((5, 1, 1))[j] | |
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] | |
else: | |
t = targets[0] | |
offsets = 0 | |
# Define | |
b, c = t[:, :2].long().T # image, class | |
gxy = t[:, 2:4] # grid xy | |
gwh = t[:, 4:6] # grid wh | |
gij = (gxy - offsets).long() | |
gi, gj = gij.T # grid xy indices | |
# Append | |
a = t[:, 6].long() # anchor indices | |
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices | |
anch.append(anchors[a]) # anchors | |
return indices, anch | |