File size: 7,600 Bytes
8f873ac
 
 
 
 
 
 
 
74ca97e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f873ac
 
 
 
 
 
 
a28ba9d
8f873ac
 
 
 
 
 
 
 
74ca97e
 
8f873ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ca97e
8f873ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a28ba9d
8f873ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python

import gradio as gr
import PIL.Image

from model import ADAPTER_NAMES, Model
from utils import MAX_SEED, randomize_seed_fn

style_list = [
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
default_style_name = "Photographic"
default_style = styles[default_style_name]
style_names = list(styles.keys())


def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
    p, n = styles.get(style_name, default_style)
    return p.replace("{prompt}", positive), n + negative


def create_demo(model: Model) -> gr.Blocks:
    def run(
        image: PIL.Image.Image,
        prompt: str,
        negative_prompt: str,
        adapter_name: str,
        style_name: str = default_style_name,
        num_inference_steps: int = 30,
        guidance_scale: float = 5.0,
        adapter_conditioning_scale: float = 1.0,
        cond_tau: float = 1.0,
        seed: int = 0,
        apply_preprocess: bool = True,
        progress=gr.Progress(track_tqdm=True),
    ) -> list[PIL.Image.Image]:
        prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
        
        return model.run(
            image=image,
            prompt=prompt,
            negative_prompt=negative_prompt,
            adapter_name=adapter_name,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            adapter_conditioning_scale=adapter_conditioning_scale,
            cond_tau=cond_tau,
            seed=seed,
            apply_preprocess=apply_preprocess,
        )

    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    image = gr.Image(label="Input image", type="pil", height=600)
                    prompt = gr.Textbox(label="Prompt")
                    adapter_name = gr.Dropdown(label="Adapter", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0])
                    run_button = gr.Button("Run")
                with gr.Accordion("Advanced options", open=False):
                    apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True)
                    negative_prompt = gr.Textbox(
                        label="Negative prompt",
                        value="anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
                    )
                    style = gr.Dropdown(choices=style_names, value=default_style_name, label="Style")
                    num_inference_steps = gr.Slider(
                        label="Number of steps",
                        minimum=1,
                        maximum=Model.MAX_NUM_INFERENCE_STEPS,
                        step=1,
                        value=30,
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.1,
                        maximum=30.0,
                        step=0.1,
                        value=5.0,
                    )
                    adapter_conditioning_scale = gr.Slider(
                        label="Adapter Conditioning Scale",
                        minimum=0.5,
                        maximum=1,
                        step=0.1,
                        value=1.0,
                    )
                    cond_tau = gr.Slider(
                        label="Fraction of timesteps for which adapter should be applied",
                        minimum=0.5,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Column():
                result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False)

        inputs = [
            image,
            prompt,
            negative_prompt,
            adapter_name,
            style,
            num_inference_steps,
            guidance_scale,
            adapter_conditioning_scale,
            cond_tau,
            seed,
            apply_preprocess,
        ]
        prompt.submit(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=run,
            inputs=inputs,
            outputs=result,
            api_name=False,
        )
        negative_prompt.submit(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=run,
            inputs=inputs,
            outputs=result,
            api_name=False,
        )
        run_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=run,
            inputs=inputs,
            outputs=result,
            api_name="run",
        )

    return demo


if __name__ == "__main__":
    model = Model(ADAPTER_NAMES[0])
    demo = create_demo(model)
    demo.queue(max_size=20).launch()