File size: 6,899 Bytes
2b755c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878ed0
2b755c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from typing import Callable

import PIL.Image
import torch
from controlnet_aux import (
    CannyDetector,
    LineartDetector,
    MidasDetector,
    PidiNetDetector,
    ZoeDetector,
)
from diffusers import (
    AutoencoderKL,
    EulerAncestralDiscreteScheduler,
    StableDiffusionXLAdapterPipeline,
    T2IAdapter,
)

ADAPTER_NAMES = [
    "TencentARC/t2i-adapter-canny-sdxl-1.0",
    "TencentARC/t2i-adapter-sketch-sdxl-1.0",
    "TencentARC/t2i-adapter-lineart-sdxl-1.0",
    "TencentARC/t2i-adapter-depth-midas-sdxl-1.0",
    "TencentARC/t2i-adapter-depth-zoe-sdxl-1.0",
    "TencentARC/t2i-adapter-recolor-sdxl-1.0",
]


class CannyPreprocessor:
    def __init__(self):
        self.model = CannyDetector()

    def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
        return self.model(image, detect_resolution=384, image_resolution=1024)


class LineartPreprocessor:
    def __init__(self):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = LineartDetector.from_pretrained("lllyasviel/Annotators").to(device)

    def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
        return self.model(image, detect_resolution=384, image_resolution=1024)


class MidasPreprocessor:
    def __init__(self):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = MidasDetector.from_pretrained(
            "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
        ).to(device)

    def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
        return self.model(image, detect_resolution=512, image_resolution=1024)


class PidiNetPreprocessor:
    def __init__(self):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = PidiNetDetector.from_pretrained("lllyasviel/Annotators").to(device)

    def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
        return self.model(image, detect_resolution=512, image_resolution=1024, apply_filter=True)


class RecolorPreprocessor:
    def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
        return image.convert("L").convert("RGB")


class ZoePreprocessor:
    def __init__(self):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = ZoeDetector.from_pretrained(
            "valhalla/t2iadapter-aux-models", filename="zoed_nk.pth", model_type="zoedepth_nk"
        ).to(device)

    def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
        return self.model(image, gamma_corrected=True, image_resolution=1024)


def get_preprocessor(adapter_name: str) -> Callable[[PIL.Image.Image], PIL.Image.Image]:
    if adapter_name == "TencentARC/t2i-adapter-canny-sdxl-1.0":
        return CannyPreprocessor()
    elif adapter_name == "TencentARC/t2i-adapter-sketch-sdxl-1.0":
        return PidiNetPreprocessor()
    elif adapter_name == "TencentARC/t2i-adapter-lineart-sdxl-1.0":
        return LineartPreprocessor()
    elif adapter_name == "TencentARC/t2i-adapter-depth-midas-sdxl-1.0":
        return MidasPreprocessor()
    elif adapter_name == "TencentARC/t2i-adapter-depth-zoe-sdxl-1.0":
        return ZoePreprocessor()
    elif adapter_name == "TencentARC/t2i-adapter-recolor-sdxl-1.0":
        return RecolorPreprocessor()
    else:
        raise ValueError(f"Adapter name must be one of {ADAPTER_NAMES}")


class Model:
    MAX_NUM_INFERENCE_STEPS = 50

    def __init__(self, adapter_name: str):
        if adapter_name not in ADAPTER_NAMES:
            raise ValueError(f"Adapter name must be one of {ADAPTER_NAMES}")

        self.adapter_name = adapter_name

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if torch.cuda.is_available():
            self.preprocessor = get_preprocessor(adapter_name)

            model_id = "stabilityai/stable-diffusion-xl-base-1.0"
            adapter = T2IAdapter.from_pretrained(
                adapter_name,
                torch_dtype=torch.float16,
                varient="fp16",
            ).to(self.device)
            euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
            vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
            self.pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
                model_id,
                vae=vae,
                adapter=adapter,
                scheduler=euler_a,
                torch_dtype=torch.float16,
                variant="fp16",
            ).to(self.device)
            self.pipe.enable_xformers_memory_efficient_attention()
        else:
            self.pipe = None

    def change_adapter(self, adapter_name: str) -> None:
        if not torch.cuda.is_available():
            raise RuntimeError("This demo does not work on CPU.")
        if adapter_name not in ADAPTER_NAMES:
            raise ValueError(f"Adapter name must be one of {ADAPTER_NAMES}")
        if adapter_name == self.adapter_name:
            return

        self.preprocessor = None  # type: ignore
        torch.cuda.empty_cache()
        self.preprocessor = get_preprocessor(adapter_name)

        self.pipe.adapter = None
        torch.cuda.empty_cache()
        self.pipe.adapter = T2IAdapter.from_pretrained(
            adapter_name,
            torch_dtype=torch.float16,
            varient="fp16",
        ).to(self.device)

    def resize_image(self, image: PIL.Image.Image) -> PIL.Image.Image:
        w, h = image.size
        scale = 1024 / max(w, h)
        new_w = int(w * scale)
        new_h = int(h * scale)
        return image.resize((new_w, new_h), PIL.Image.LANCZOS)

    def run(
        self,
        image: PIL.Image.Image,
        prompt: str,
        negative_prompt: str,
        num_inference_steps: int = 30,
        guidance_scale: float = 7.5,
        adapter_conditioning_scale: float = 0.8,
        cond_tau: float = 0.8,
        seed: int = 0,
        apply_preprocess: bool = True,
    ) -> list[PIL.Image.Image]:
        if num_inference_steps > self.MAX_NUM_INFERENCE_STEPS:
            raise ValueError(f"Number of steps must be less than {self.MAX_NUM_INFERENCE_STEPS}")

        # Resize image to avoid OOM
        image = self.resize_image(image)

        if apply_preprocess:
            image = self.preprocessor(image)

        generator = torch.Generator(device=self.device).manual_seed(seed)
        out = self.pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=image,
            num_inference_steps=num_inference_steps,
            adapter_conditioning_scale=adapter_conditioning_scale,
            cond_tau=cond_tau,
            generator=generator,
            guidance_scale=guidance_scale,
        ).images[0]
        return [image, out]