Luisgust commited on
Commit
c533a73
·
verified ·
1 Parent(s): 2e1f929

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +124 -0
main.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from fastapi import FastAPI, File, UploadFile, Form
3
+ from fastapi.responses import StreamingResponse, FileResponse
4
+ from fastapi.staticfiles import StaticFiles
5
+ import torch
6
+ import cv2
7
+ import numpy as np
8
+ import logging
9
+ from io import BytesIO
10
+ import tempfile
11
+ import os
12
+ from insightface.app import FaceAnalysis
13
+
14
+ app = FastAPI()
15
+
16
+ # Load model and necessary components
17
+ model = None
18
+
19
+ def load_model():
20
+ global model
21
+ from vtoonify_model import Model
22
+ model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
23
+ model.load_model('cartoon4')
24
+
25
+ # Initialize the InsightFace model for face detection
26
+ face_detector = FaceAnalysis(allowed_modules=['detection'])
27
+ face_detector.prepare(ctx_id=0 if torch.cuda.is_available() else -1, det_size=(640, 640))
28
+
29
+ # Configure logging
30
+ logging.basicConfig(level=logging.INFO)
31
+
32
+ def detect_and_crop_face(image, padding=0.6):
33
+ # Get original dimensions
34
+ orig_h, orig_w = image.shape[:2]
35
+
36
+ # Resize the image for detection
37
+ resized_image = cv2.resize(image, (640, 640))
38
+
39
+ # Detect faces on the resized image
40
+ faces = face_detector.get(resized_image)
41
+
42
+ # If faces are detected, sort by x-coordinate and select the leftmost face
43
+ if faces:
44
+ faces = sorted(faces, key=lambda face: face.bbox[0])
45
+ face = faces[0] # Select the leftmost face
46
+ bbox = face.bbox.astype(int)
47
+
48
+ # Calculate scaling factors
49
+ h_scale = orig_h / 640
50
+ w_scale = orig_w / 640
51
+
52
+ # Map the bounding box to the original image size
53
+ x1, y1, x2, y2 = bbox
54
+ x1 = int(x1 * w_scale)
55
+ y1 = int(y1 * h_scale)
56
+ x2 = int(x2 * w_scale)
57
+ y2 = int(y2 * h_scale)
58
+
59
+ # Calculate padding
60
+ width = x2 - x1
61
+ height = y2 - y1
62
+ x1 = max(0, x1 - int(padding * width))
63
+ y1 = max(0, y1 - int(padding * height))
64
+ x2 = min(orig_w, x2 + int(padding * width))
65
+ y2 = min(orig_h, y2 + int(padding * height))
66
+
67
+ cropped_face = image[y1:y2, x1:x2]
68
+ return cropped_face
69
+
70
+ return None
71
+
72
+ @app.post("/upload/")
73
+ async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
74
+ global model
75
+ if model is None:
76
+ load_model()
77
+
78
+ # Read the uploaded image file
79
+ contents = await file.read()
80
+
81
+ # Convert the uploaded image to numpy array
82
+ nparr = np.frombuffer(contents, np.uint8)
83
+ frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Read as BGR format by default
84
+
85
+ if frame_bgr is None:
86
+ logging.error("Failed to decode the image.")
87
+ return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
88
+ logging.info(f"Uploaded image shape: {frame_bgr.shape}")
89
+
90
+ # Detect and crop face
91
+ cropped_face = detect_and_crop_face(frame_bgr)
92
+ if cropped_face is None:
93
+ return {"error": "No face detected or alignment failed."}
94
+
95
+ # Save the cropped face temporarily
96
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
97
+ cv2.imwrite(temp_file.name, cropped_face)
98
+ temp_file_path = temp_file.name
99
+
100
+ try:
101
+ # Process the cropped face using the file path
102
+ aligned_face, instyle, message = model.detect_and_align_image(temp_file_path, top, bottom, left, right)
103
+ if aligned_face is None or instyle is None:
104
+ logging.error("Failed to process the image: No face detected or alignment failed.")
105
+ return {"error": message}
106
+
107
+ processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon4')
108
+ if processed_image is None:
109
+ logging.error("Failed to toonify the image.")
110
+ return {"error": message}
111
+
112
+ # Convert the processed image to RGB before returning
113
+ processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
114
+
115
+ # Convert processed image to bytes
116
+ _, encoded_image = cv2.imencode('.jpg', processed_image_rgb)
117
+
118
+ # Return the processed image as a streaming response
119
+ return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
120
+
121
+ finally:
122
+ # Clean up the temporary file
123
+ os.remove(temp_file_path)
124
+