Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
3 |
+
from fastapi.responses import StreamingResponse, FileResponse
|
4 |
+
from fastapi.staticfiles import StaticFiles
|
5 |
+
import torch
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import logging
|
9 |
+
from io import BytesIO
|
10 |
+
import tempfile
|
11 |
+
import os
|
12 |
+
from insightface.app import FaceAnalysis
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Load model and necessary components
|
17 |
+
model = None
|
18 |
+
|
19 |
+
def load_model():
|
20 |
+
global model
|
21 |
+
from vtoonify_model import Model
|
22 |
+
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
+
model.load_model('cartoon4')
|
24 |
+
|
25 |
+
# Initialize the InsightFace model for face detection
|
26 |
+
face_detector = FaceAnalysis(allowed_modules=['detection'])
|
27 |
+
face_detector.prepare(ctx_id=0 if torch.cuda.is_available() else -1, det_size=(640, 640))
|
28 |
+
|
29 |
+
# Configure logging
|
30 |
+
logging.basicConfig(level=logging.INFO)
|
31 |
+
|
32 |
+
def detect_and_crop_face(image, padding=0.6):
|
33 |
+
# Get original dimensions
|
34 |
+
orig_h, orig_w = image.shape[:2]
|
35 |
+
|
36 |
+
# Resize the image for detection
|
37 |
+
resized_image = cv2.resize(image, (640, 640))
|
38 |
+
|
39 |
+
# Detect faces on the resized image
|
40 |
+
faces = face_detector.get(resized_image)
|
41 |
+
|
42 |
+
# If faces are detected, sort by x-coordinate and select the leftmost face
|
43 |
+
if faces:
|
44 |
+
faces = sorted(faces, key=lambda face: face.bbox[0])
|
45 |
+
face = faces[0] # Select the leftmost face
|
46 |
+
bbox = face.bbox.astype(int)
|
47 |
+
|
48 |
+
# Calculate scaling factors
|
49 |
+
h_scale = orig_h / 640
|
50 |
+
w_scale = orig_w / 640
|
51 |
+
|
52 |
+
# Map the bounding box to the original image size
|
53 |
+
x1, y1, x2, y2 = bbox
|
54 |
+
x1 = int(x1 * w_scale)
|
55 |
+
y1 = int(y1 * h_scale)
|
56 |
+
x2 = int(x2 * w_scale)
|
57 |
+
y2 = int(y2 * h_scale)
|
58 |
+
|
59 |
+
# Calculate padding
|
60 |
+
width = x2 - x1
|
61 |
+
height = y2 - y1
|
62 |
+
x1 = max(0, x1 - int(padding * width))
|
63 |
+
y1 = max(0, y1 - int(padding * height))
|
64 |
+
x2 = min(orig_w, x2 + int(padding * width))
|
65 |
+
y2 = min(orig_h, y2 + int(padding * height))
|
66 |
+
|
67 |
+
cropped_face = image[y1:y2, x1:x2]
|
68 |
+
return cropped_face
|
69 |
+
|
70 |
+
return None
|
71 |
+
|
72 |
+
@app.post("/upload/")
|
73 |
+
async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
|
74 |
+
global model
|
75 |
+
if model is None:
|
76 |
+
load_model()
|
77 |
+
|
78 |
+
# Read the uploaded image file
|
79 |
+
contents = await file.read()
|
80 |
+
|
81 |
+
# Convert the uploaded image to numpy array
|
82 |
+
nparr = np.frombuffer(contents, np.uint8)
|
83 |
+
frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Read as BGR format by default
|
84 |
+
|
85 |
+
if frame_bgr is None:
|
86 |
+
logging.error("Failed to decode the image.")
|
87 |
+
return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
|
88 |
+
logging.info(f"Uploaded image shape: {frame_bgr.shape}")
|
89 |
+
|
90 |
+
# Detect and crop face
|
91 |
+
cropped_face = detect_and_crop_face(frame_bgr)
|
92 |
+
if cropped_face is None:
|
93 |
+
return {"error": "No face detected or alignment failed."}
|
94 |
+
|
95 |
+
# Save the cropped face temporarily
|
96 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
97 |
+
cv2.imwrite(temp_file.name, cropped_face)
|
98 |
+
temp_file_path = temp_file.name
|
99 |
+
|
100 |
+
try:
|
101 |
+
# Process the cropped face using the file path
|
102 |
+
aligned_face, instyle, message = model.detect_and_align_image(temp_file_path, top, bottom, left, right)
|
103 |
+
if aligned_face is None or instyle is None:
|
104 |
+
logging.error("Failed to process the image: No face detected or alignment failed.")
|
105 |
+
return {"error": message}
|
106 |
+
|
107 |
+
processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon4')
|
108 |
+
if processed_image is None:
|
109 |
+
logging.error("Failed to toonify the image.")
|
110 |
+
return {"error": message}
|
111 |
+
|
112 |
+
# Convert the processed image to RGB before returning
|
113 |
+
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
|
114 |
+
|
115 |
+
# Convert processed image to bytes
|
116 |
+
_, encoded_image = cv2.imencode('.jpg', processed_image_rgb)
|
117 |
+
|
118 |
+
# Return the processed image as a streaming response
|
119 |
+
return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
|
120 |
+
|
121 |
+
finally:
|
122 |
+
# Clean up the temporary file
|
123 |
+
os.remove(temp_file_path)
|
124 |
+
|