Spaces:
Sleeping
Sleeping
import nltk | |
import librosa | |
import torch | |
import kenlm | |
import gradio as gr | |
from pyctcdecode import build_ctcdecoder | |
from transformers import Wav2Vec2Processor,Wav2Vec2ProcessorWithLM,Wav2Vec2ForCTC | |
nltk.download("punkt") | |
def return_processor_and_model(model_name): | |
return Wav2Vec2Processor.from_pretrained(model_name), Wav2Vec2ForCTC.from_pretrained(model_name) | |
def return_processor_and_modelWithLM(model_name): | |
return Wav2Vec2ProcessorWithLM.from_pretrained(model_name), Wav2Vec2ForCTC.from_pretrained(model_name) | |
def load_and_fix_data(input_file): | |
speech, sample_rate = librosa.load(input_file) | |
if len(speech.shape) > 1: | |
speech = speech[:,0] + speech[:,1] | |
if sample_rate !=16000: | |
speech = librosa.resample(speech, sample_rate,16000) | |
return speech | |
def fix_transcription_casing(input_sentence): | |
sentences = nltk.sent_tokenize(input_sentence) | |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) | |
def predict_and_ctc_lm_decode(input_file, model_name): | |
processor, model = return_processor_and_modelWithLM(model_name) | |
speech = load_and_fix_data(input_file) | |
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values | |
with torch.no_grad(): | |
logits = model(input_values).logits.cpu().detach().numpy()[0] | |
pred = processor.decode(logits).text | |
transcribed_text = fix_transcription_casing(pred.lower()) | |
return transcribed_text | |
def predict_and_greedy_decode(input_file, model_name): | |
processor, model = return_processor_and_model(model_name) | |
speech = load_and_fix_data(input_file) | |
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
pred = processor.batch_decode(predicted_ids) | |
transcribed_text = fix_transcription_casing(pred[0].lower()) | |
return transcribed_text | |
def return_all_predictions(input_file, model_name): | |
return predict_and_ctc_lm_decode(input_file, model_name), predict_and_greedy_decode(input_file, model_name) | |
gr.Interface(return_all_predictions, | |
inputs = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown(["LuisG07/wav2vec2-large-xlsr-53-spanish", "jonatasgrosman/wav2vec2-xls-r-1b-spanish"], label="Model Name")], | |
outputs = [gr.outputs.Textbox(label="Beam CTC decoding w/ LM"), gr.outputs.Textbox(label="Greedy decoding")], | |
title="ASR using Wav2Vec2 & pyctcdecode in spanish", | |
description = "Comparing greedy decoder with beam search CTC decoder, record/ drop your audio!", | |
layout = "horizontal", | |
examples = [["test1.wav", "LuisG07/wav2vec2-large-xlsr-53-spanish"], ["test2.wav", "LuisG07/wav2vec2-large-xlsr-53-spanish"]], | |
theme="huggingface", | |
enable_queue=True).launch() |