Luigi's picture
fix role disorder error in history
06a162a
raw
history blame
11.4 kB
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import os, gc, shutil, re
from itertools import islice
from duckduckgo_search import DDGS # Latest class-based interface :contentReference[oaicite:0]{index=0}
# ----- Custom CSS for pretty formatting of internal reasoning -----
CUSTOM_CSS = """
<style>
/* Styles for the internal reasoning bullet list */
ul.think-list {
margin: 0.5em 0 1em 1.5em;
padding: 0;
list-style-type: disc;
}
ul.think-list li {
margin-bottom: 0.5em;
}
/* Container style for the "in progress" internal reasoning */
.chat-assistant {
background-color: #f9f9f9;
padding: 1em;
border-radius: 5px;
margin-bottom: 1em;
}
</style>
"""
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
# ----- Set a threshold for required free storage (in bytes) -----
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 # 5 GB
# ----- Function to perform DuckDuckGo search and retrieve concise context -----
def retrieve_context(query, max_results=2, max_chars_per_result=150):
"""
Query DuckDuckGo for the given search query and return a concatenated context string.
Uses the DDGS().text() generator (with region, safesearch, and timelimit parameters)
and limits the results using islice. Each result's title and snippet are combined into context.
"""
try:
with DDGS() as ddgs:
results_gen = ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y")
results = list(islice(results_gen, max_results))
context = ""
if results:
for i, result in enumerate(results, start=1):
title = result.get("title", "No Title")
snippet = result.get("body", "")[:max_chars_per_result]
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
return context.strip()
except Exception as e:
st.error(f"Error during retrieval: {e}")
return ""
# ----- Available models -----
MODELS = {
"Qwen2.5-0.5B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
"filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf",
"description": "Qwen2.5-0.5B-Instruct (Q4_K_M)"
},
"Gemma-3.1B-it (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-1b-it-GGUF",
"filename": "gemma-3-1b-it-Q4_K_M.gguf",
"description": "Gemma-3.1B-it (Q4_K_M)"
},
"Qwen2.5-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
"filename": "qwen2.5-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-7B Instruct (Q2_K)"
},
"Gemma-3-4B-IT (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-4b-it-GGUF",
"filename": "gemma-3-4b-it-Q4_K_M.gguf",
"description": "Gemma 3 4B IT (Q4_K_M)"
},
"Phi-4-mini-Instruct (Q4_K_M)": {
"repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
"description": "Phi-4 Mini Instruct (Q4_K_M)"
},
"Meta-Llama-3.1-8B-Instruct (Q2_K)": {
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
"filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
"description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
},
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
"filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
"description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
},
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
"filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
"description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
},
"Qwen2.5-Coder-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
"filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
"description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
},
}
# ----- Sidebar settings -----
with st.sidebar:
st.header("⚙️ Settings")
selected_model_name = st.selectbox("Select Model", list(MODELS.keys()))
system_prompt_base = st.text_area("System Prompt", value="You are a helpful assistant.", height=80)
max_tokens = st.slider("Max tokens", 64, 1024, 256, step=32) # Adjust for lower memory usage
temperature = st.slider("Temperature", 0.1, 2.0, 0.7)
top_k = st.slider("Top-K", 1, 100, 40)
top_p = st.slider("Top-P", 0.1, 1.0, 0.95)
repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1)
# Checkbox to enable the DuckDuckGo search feature (disabled by default)
enable_search = st.checkbox("Enable Web Search", value=False)
if st.button("📦 Show Disk Usage"):
try:
usage = shutil.disk_usage(".")
used = usage.used / (1024 ** 3)
free = usage.free / (1024 ** 3)
st.info(f"Disk Used: {used:.2f} GB | Free: {free:.2f} GB")
except Exception as e:
st.error(f"Disk usage error: {e}")
# ----- Define selected model and path -----
selected_model = MODELS[selected_model_name]
model_path = os.path.join("models", selected_model["filename"])
# Ensure model directory exists
os.makedirs("models", exist_ok=True)
# ----- Helper functions for model management -----
def try_load_model(path):
try:
return Llama(
model_path=path,
n_ctx=512, # Reduced context window to save memory
n_threads=1, # Fewer threads for resource-constrained environments
n_threads_batch=1,
n_batch=2, # Lower batch size to conserve memory
n_gpu_layers=0,
use_mlock=False,
use_mmap=True,
verbose=False,
)
except Exception as e:
return str(e)
def download_model():
with st.spinner(f"Downloading {selected_model['filename']}..."):
hf_hub_download(
repo_id=selected_model["repo_id"],
filename=selected_model["filename"],
local_dir="./models",
local_dir_use_symlinks=False,
)
def validate_or_download_model():
if not os.path.exists(model_path):
free_space = shutil.disk_usage(".").free
if free_space < REQUIRED_SPACE_BYTES:
st.info("Insufficient storage. Consider cleaning up old models.")
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.warning(f"Initial load failed: {result}\nAttempting re-download...")
try:
os.remove(model_path)
except Exception:
pass
download_model()
result = try_load_model(model_path)
if isinstance(result, str):
st.error(f"Model still failed after re-download: {result}")
st.stop()
return result
return result
# ----- Session state initialization -----
if "model_name" not in st.session_state:
st.session_state.model_name = None
if "llm" not in st.session_state:
st.session_state.llm = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "pending_response" not in st.session_state:
st.session_state.pending_response = False
# ----- Load model if changed -----
if st.session_state.model_name != selected_model_name:
if st.session_state.llm is not None:
del st.session_state.llm
gc.collect()
st.session_state.llm = validate_or_download_model()
st.session_state.model_name = selected_model_name
llm = st.session_state.llm
# ----- Display title and caption -----
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")
# Render existing chat history
for chat in st.session_state.chat_history:
with st.chat_message(chat["role"]):
st.markdown(chat["content"])
# ----- Chat input and integrated RAG with memory optimizations -----
user_input = st.chat_input("Ask something...")
if user_input:
if st.session_state.pending_response:
st.warning("Please wait for the assistant to finish responding.")
else:
# Display the raw user input immediately in the chat view.
with st.chat_message("user"):
st.markdown(user_input)
# Append the plain user message to chat history for display purposes.
# (We will later override the last user message in the API call with the augmented version.)
st.session_state.chat_history.append({"role": "user", "content": user_input})
st.session_state.pending_response = True
# Retrieve extra context from web search if enabled
if enable_search:
retrieved_context = retrieve_context(user_input, max_results=2, max_chars_per_result=150)
else:
retrieved_context = ""
st.sidebar.markdown("### Retrieved Context" if enable_search else "Web Search Disabled")
st.sidebar.text(retrieved_context or "No context found.")
# Build an augmented user query by merging the system prompt (and search context when available)
if enable_search and retrieved_context:
augmented_user_input = (
f"{system_prompt_base.strip()}\n\n"
f"Use the following recent web search context to help answer the query:\n\n"
f"{retrieved_context}\n\n"
f"User Query: {user_input}"
)
else:
augmented_user_input = f"{system_prompt_base.strip()}\n\nUser Query: {user_input}"
# Limit conversation history to the last MAX_TURNS turns (user/assistant pairs)
MAX_TURNS = 2
trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
# Replace the last user message (which is plain) with the augmented version for model input.
if trimmed_history and trimmed_history[-1]["role"] == "user":
messages = trimmed_history[:-1] + [{"role": "user", "content": augmented_user_input}]
else:
messages = trimmed_history + [{"role": "user", "content": augmented_user_input}]
# Generate response with the LLM in a streaming fashion
with st.chat_message("assistant"):
visible_placeholder = st.empty()
full_response = ""
stream = llm.create_chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
stream=True,
)
for chunk in stream:
if "choices" in chunk:
delta = chunk["choices"][0]["delta"].get("content", "")
full_response += delta
# Clean internal reasoning markers before display
visible_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL)
visible_response = re.sub(r"<think>.*$", "", visible_response, flags=re.DOTALL)
visible_placeholder.markdown(visible_response)
# Append the assistant's response to conversation history.
st.session_state.chat_history.append({"role": "assistant", "content": full_response})
st.session_state.pending_response = False
gc.collect() # Free memory