Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,508 Bytes
a703203 248f5a7 a703203 d181b45 293686e 248f5a7 4c6b4c5 ac8e9cc 4c6b4c5 0ff6c39 eb215ff a703203 eb215ff a703203 9d3ca6c d181b45 eb215ff cd26609 293686e cd26609 ac8e9cc a703203 ac8e9cc 293686e ac8e9cc 293686e ac8e9cc 293686e ac8e9cc a703203 293686e ac8e9cc 293686e ac8e9cc a703203 293686e a703203 293686e d33dfcd 293686e ef361b0 293686e ef361b0 293686e ef361b0 ac8e9cc 293686e ac8e9cc 293686e ac8e9cc a703203 293686e a703203 293686e a703203 293686e eb215ff bc257ff 9ad3ffd a2f07a4 9ad3ffd a2f07a4 9ad3ffd bc257ff ac8e9cc 293686e 939895d 293686e 939895d 293686e 939895d 293686e 37f7787 293686e eb215ff 293686e ac8e9cc eb215ff 293686e a703203 293686e afa19a3 5f6306a 293686e 5f6306a eb215ff 293686e eb215ff d181b45 293686e a703203 293686e a703203 293686e a703203 293686e a703203 293686e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import time
import gc
import threading
from itertools import islice
from datetime import datetime
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer
from duckduckgo_search import DDGS
import spaces # Import spaces early to enable ZeroGPU support
# Optional: Disable GPU visibility if you wish to force CPU usage
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()
# ------------------------------
# Torch-Compatible Model Definitions with Adjusted Descriptions
# ------------------------------
MODELS = {
"Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
"SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat"},
"SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2‑135M Instruct"},
"Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
"MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
"Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
"Qwen2.5-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-7B-Instruct", "description": "Qwen2.5-7B-Instruct"},
"Phi-4-mini-Instruct": {"repo_id": "unsloth/Phi-4-mini-instruct", "description": "Phi-4-mini-Instruct"},
"Meta-Llama-3.1-8B-Instruct": {"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct", "description": "Meta-Llama-3.1-8B-Instruct"},
"DeepSeek-R1-Distill-Llama-8B": {"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B", "description": "DeepSeek-R1-Distill-Llama-8B"},
"Mistral-7B-Instruct-v0.3": {"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3", "description": "Mistral-7B-Instruct-v0.3"},
"Qwen2.5-Coder-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct", "description": "Qwen2.5-Coder-7B-Instruct"},
}
# Global cache for pipelines to avoid re-loading.
PIPELINES = {}
def load_pipeline(model_name):
"""
Load and cache a transformers pipeline for text generation.
Tries bfloat16, falls back to float16 or float32 if unsupported.
"""
global PIPELINES
if model_name in PIPELINES:
return PIPELINES[model_name]
repo = MODELS[model_name]["repo_id"]
for dtype in (torch.bfloat16, torch.float16, torch.float32):
try:
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=repo,
trust_remote_code=True,
torch_dtype=dtype,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
except Exception:
continue
# Final fallback
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=repo,
trust_remote_code=True,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
def retrieve_context(query, max_results=6, max_chars=600):
"""
Retrieve search snippets from DuckDuckGo (runs in background).
Returns a list of result strings.
"""
try:
with DDGS() as ddgs:
return [f"{i+1}. {r.get('title','No Title')} - {r.get('body','')[:max_chars]}"
for i, r in enumerate(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))]
except Exception:
return []
def format_conversation(history, system_prompt):
"""
Flatten chat history and system prompt into a single string.
"""
prompt = system_prompt.strip() + "\n"
for msg in history:
if msg['role'] == 'user':
prompt += "User: " + msg['content'].strip() + "\n"
elif msg['role'] == 'assistant':
prompt += "Assistant: " + msg['content'].strip() + "\n"
else:
prompt += msg['content'].strip() + "\n"
if not prompt.strip().endswith("Assistant:"):
prompt += "Assistant: "
return prompt
@spaces.GPU(duration=60)
def chat_response(user_msg, chat_history, system_prompt,
enable_search, max_results, max_chars,
model_name, max_tokens, temperature,
top_k, top_p, repeat_penalty):
"""
Generates streaming chat responses, optionally with background web search.
"""
cancel_event.clear()
history = list(chat_history or [])
history.append({'role': 'user', 'content': user_msg})
# Launch web search if enabled
debug = ''
search_results = []
if enable_search:
debug = 'Search task started.'
thread_search = threading.Thread(
target=lambda: search_results.extend(
retrieve_context(user_msg, int(max_results), int(max_chars))
)
)
thread_search.daemon = True
thread_search.start()
else:
debug = 'Web search disabled.'
# Prepare assistant placeholder
history.append({'role': 'assistant', 'content': ''})
try:
# merge any fetched search results into the system prompt
if search_results:
enriched = system_prompt.strip() + "\n\nRelevant context:\n" + "\n".join(search_results)
else:
enriched = system_prompt
# wait up to 1s for snippets, then replace debug with them
if enable_search:
thread_search.join(timeout=1.0)
if search_results:
debug = "### Search results merged into prompt\n\n" + "\n".join(
f"- {r}" for r in search_results
)
else:
debug = "*No web search results found.*"
# merge fetched snippets into the system prompt
if search_results:
enriched = system_prompt.strip() + "\n\nRelevant context:\n" + "\n".join(search_results)
else:
enriched = system_prompt
prompt = format_conversation(history, enriched)
pipe = load_pipeline(model_name)
streamer = TextIteratorStreamer(pipe.tokenizer,
skip_prompt=True,
skip_special_tokens=True)
gen_thread = threading.Thread(
target=pipe,
args=(prompt,),
kwargs={
'max_new_tokens': max_tokens,
'temperature': temperature,
'top_k': top_k,
'top_p': top_p,
'repetition_penalty': repeat_penalty,
'streamer': streamer,
'return_full_text': False
}
)
gen_thread.start()
assistant_text = ''
for chunk in streamer:
if cancel_event.is_set():
break
assistant_text += chunk
history[-1]['content'] = assistant_text
# Show debug only once
yield history, debug
gen_thread.join()
except Exception as e:
history[-1]['content'] = f"Error: {e}"
yield history, debug
finally:
gc.collect()
def cancel_generation():
cancel_event.set()
return 'Generation cancelled.'
def update_default_prompt(enable_search):
today = datetime.now().strftime('%Y-%m-%d')
return f"You are a helpful assistant. Today is {today}."
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
gr.Markdown("Interact with the model. Select parameters and chat below.")
with gr.Row():
with gr.Column(scale=3):
model_dd = gr.Dropdown(label="Select Model", choices=list(MODELS.keys()), value=list(MODELS.keys())[0])
search_chk = gr.Checkbox(label="Enable Web Search", value=True)
sys_prompt = gr.Textbox(label="System Prompt", lines=3, value=update_default_prompt(search_chk.value))
gr.Markdown("### Generation Parameters")
max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens")
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
gr.Markdown("### Web Search Settings")
mr = gr.Number(value=6, precision=0, label="Max Results")
mc = gr.Number(value=600, precision=0, label="Max Chars/Result")
clr = gr.Button("Clear Chat")
cnl = gr.Button("Cancel Generation")
with gr.Column(scale=7):
chat = gr.Chatbot(type="messages")
txt = gr.Textbox(placeholder="Type your message and press Enter...")
dbg = gr.Markdown()
search_chk.change(fn=update_default_prompt, inputs=search_chk, outputs=sys_prompt)
clr.click(fn=lambda: ([], "", ""), outputs=[chat, txt, dbg])
cnl.click(fn=cancel_generation, outputs=dbg)
txt.submit(fn=chat_response,
inputs=[txt, chat, sys_prompt, search_chk, mr, mc,
model_dd, max_tok, temp, k, p, rp],
outputs=[chat, dbg])
demo.launch()
|