Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,201 Bytes
a703203 248f5a7 a703203 d181b45 0ff6c39 248f5a7 c5b2897 0ff6c39 eb215ff a703203 eb215ff a703203 9d3ca6c eb215ff d181b45 eb215ff cd26609 794ee70 d181b45 794ee70 b1544e2 d181b45 b1544e2 f5c0811 d181b45 f5c0811 f7a541f d181b45 f7a541f cd26609 d181b45 cd26609 0813164 d181b45 cd26609 37ee1f3 d181b45 cd26609 d554072 d181b45 d554072 d181b45 d554072 d181b45 d554072 d181b45 d554072 cd26609 d181b45 a703203 eb215ff d181b45 eb215ff a703203 d181b45 a703203 d181b45 a703203 d33dfcd a703203 d33dfcd a703203 d33dfcd a703203 d181b45 a703203 c5b2897 a703203 d181b45 a703203 d181b45 a703203 eb215ff d181b45 a703203 d181b45 eb215ff a703203 eb215ff a703203 eb215ff a703203 afa19a3 eb215ff a703203 eb215ff d181b45 a703203 afa19a3 a703203 4e60755 a703203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import time
import gc
import threading
from itertools import islice
from datetime import datetime
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import hf_hub_download
from duckduckgo_search import DDGS
import spaces
# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()
# ------------------------------
# Model Definitions and Global Variables (PyTorch/Transformers)
# ------------------------------
# Here, the repo_id should point to a model checkpoint that is compatible with Hugging Face Transformers.
# ------------------------------
# Torch-Compatible Model Definitions with Adjusted Descriptions
# ------------------------------
MODELS = {
"Taiwan-tinyllama-v1.0-chat (Q8_0)": {
"repo_id": "DavidLanz/Taiwan-tinyllama-v1.0-chat",
"description": "Taiwan-tinyllama-v1.0-chat (Q8_0) – Torch-compatible version converted from GGUF."
},
"Llama-3.2-Taiwan-3B-Instruct (Q4_K_M)": {
"repo_id": "https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct",
"description": "Llama-3.2-Taiwan-3B-Instruct (Q4_K_M) – Torch-compatible version converted from GGUF."
},
"MiniCPM3-4B (Q4_K_M)": {
"repo_id": "openbmb/MiniCPM3-4B",
"description": "MiniCPM3-4B (Q4_K_M) – Torch-compatible version converted from GGUF."
},
"Qwen2.5-3B-Instruct (Q4_K_M)": {
"repo_id": "Qwen/Qwen2.5-3B-Instruct",
"description": "Qwen2.5-3B-Instruct (Q4_K_M) – Torch-compatible version converted from GGUF."
},
"Qwen2.5-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-7B-Instruct",
"description": "Qwen2.5-7B-Instruct (Q2_K) – Torch-compatible version converted from GGUF."
},
"Gemma-3-4B-IT (Q4_K_M)": {
"repo_id": "unsloth/gemma-3-4b-it",
"description": "Gemma-3-4B-IT (Q4_K_M) – Torch-compatible version converted from GGUF."
},
"Phi-4-mini-Instruct (Q4_K_M)": {
"repo_id": "unsloth/Phi-4-mini-instruct",
"description": "Phi-4-mini-Instruct (Q4_K_M) – Torch-compatible version converted from GGUF."
},
"Meta-Llama-3.1-8B-Instruct (Q2_K)": {
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct",
"description": "Meta-Llama-3.1-8B-Instruct (Q2_K) – Torch-compatible version converted from GGUF."
},
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B",
"description": "DeepSeek-R1-Distill-Llama-8B (Q2_K) – Torch-compatible version converted from GGUF."
},
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3",
"description": "Mistral-7B-Instruct-v0.3 (IQ3_XS) – Torch-compatible version converted from GGUF."
},
"Qwen2.5-Coder-7B-Instruct (Q2_K)": {
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct",
"description": "Qwen2.5-Coder-7B-Instruct (Q2_K) – Torch-compatible version converted from GGUF."
},
}
LOADED_MODELS = {}
CURRENT_MODEL_NAME = None
# ------------------------------
# Model Loading Helper Function (PyTorch/Transformers)
# ------------------------------
def load_model(model_name):
global LOADED_MODELS, CURRENT_MODEL_NAME
if model_name in LOADED_MODELS:
return LOADED_MODELS[model_name]
selected_model = MODELS[model_name]
# Load both the model and tokenizer using the Transformers library.
model = AutoModelForCausalLM.from_pretrained(selected_model["repo_id"], trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(selected_model["repo_id"], trust_remote_code=True)
LOADED_MODELS[model_name] = (model, tokenizer)
CURRENT_MODEL_NAME = model_name
return model, tokenizer
# ------------------------------
# Web Search Context Retrieval Function
# ------------------------------
def retrieve_context(query, max_results=6, max_chars_per_result=600):
try:
with DDGS() as ddgs:
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
context = ""
for i, result in enumerate(results, start=1):
title = result.get("title", "No Title")
snippet = result.get("body", "")[:max_chars_per_result]
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
return context.strip()
except Exception:
return ""
# ------------------------------
# Chat Response Generation (Simulated Streaming) with Cancellation
# ------------------------------
@spaces.GPU
def chat_response(user_message, chat_history, system_prompt, enable_search,
max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty):
# Reset the cancellation event.
cancel_event.clear()
# Prepare internal history.
internal_history = list(chat_history) if chat_history else []
internal_history.append({"role": "user", "content": user_message})
# Retrieve web search context (with debug feedback).
debug_message = ""
if enable_search:
debug_message = "Initiating web search..."
yield internal_history, debug_message
search_result = [""]
def do_search():
search_result[0] = retrieve_context(user_message, max_results, max_chars)
search_thread = threading.Thread(target=do_search)
search_thread.start()
search_thread.join(timeout=2)
retrieved_context = search_result[0]
if retrieved_context:
debug_message = f"Web search results:\n\n{retrieved_context}"
else:
debug_message = "Web search returned no results or timed out."
else:
retrieved_context = ""
debug_message = "Web search disabled."
# Augment prompt with search context if available.
if enable_search and retrieved_context:
augmented_user_input = (
f"{system_prompt.strip()}\n\n"
"Use the following recent web search context to help answer the query:\n\n"
f"{retrieved_context}\n\n"
f"User Query: {user_message}"
)
else:
augmented_user_input = f"{system_prompt.strip()}\n\nUser Query: {user_message}"
# Append a placeholder for the assistant's response.
internal_history.append({"role": "assistant", "content": ""})
try:
# Load the PyTorch model and tokenizer.
model, tokenizer = load_model(model_name)
# Tokenize the input prompt.
input_ids = tokenizer(augmented_user_input, return_tensors="pt").input_ids
with torch.no_grad():
output_ids = model.generate(
input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repeat_penalty,
do_sample=True
)
# Decode the generated tokens.
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Strip the original prompt to isolate the assistant’s reply.
assistant_text = generated_text[len(augmented_user_input):].strip()
# Simulate streaming by yielding the output word by word.
words = assistant_text.split()
assistant_message = ""
for word in words:
if cancel_event.is_set():
assistant_message += "\n\n[Response generation cancelled by user]"
internal_history[-1]["content"] = assistant_message
yield internal_history, debug_message
return
assistant_message += word + " "
internal_history[-1]["content"] = assistant_message
yield internal_history, debug_message
time.sleep(0.05) # Short delay to simulate streaming
except Exception as e:
internal_history[-1]["content"] = f"Error: {e}"
yield internal_history, debug_message
gc.collect()
# ------------------------------
# Cancel Function
# ------------------------------
def cancel_generation():
cancel_event.set()
return "Cancellation requested."
# ------------------------------
# Gradio UI Definition
# ------------------------------
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
gr.Markdown("Interact with the model. Select your model, set your system prompt, and adjust parameters on the left.")
with gr.Row():
with gr.Column(scale=3):
default_model = list(MODELS.keys())[0] if MODELS else "No models available"
model_dropdown = gr.Dropdown(
label="Select Model",
choices=list(MODELS.keys()) if MODELS else [],
value=default_model,
info="Choose from available models."
)
today = datetime.now().strftime('%Y-%m-%d')
default_prompt = f"You are a helpful assistant. Today is {today}. Please leverage the latest web data when responding to queries."
system_prompt_text = gr.Textbox(label="System Prompt",
value=default_prompt,
lines=3,
info="Define the base context for the AI's responses.")
gr.Markdown("### Generation Parameters")
max_tokens_slider = gr.Slider(label="Max Tokens", minimum=64, maximum=1024, value=1024, step=32,
info="Maximum tokens for the response.")
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1,
info="Controls the randomness of the output.")
top_k_slider = gr.Slider(label="Top-K", minimum=1, maximum=100, value=40, step=1,
info="Limits token candidates to the top-k tokens.")
top_p_slider = gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.95, step=0.05,
info="Limits token candidates to a cumulative probability threshold.")
repeat_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1,
info="Penalizes token repetition to improve diversity.")
gr.Markdown("### Web Search Settings")
enable_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False,
info="Include recent search context to improve answers.")
max_results_number = gr.Number(label="Max Search Results", value=6, precision=0,
info="Maximum number of search results to retrieve.")
max_chars_number = gr.Number(label="Max Chars per Result", value=600, precision=0,
info="Maximum characters to retrieve per search result.")
clear_button = gr.Button("Clear Chat")
cancel_button = gr.Button("Cancel Generation")
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Chat", type="messages")
msg_input = gr.Textbox(label="Your Message", placeholder="Enter your message and press Enter")
search_debug = gr.Markdown(label="Web Search Debug")
def clear_chat():
return [], "", ""
clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug])
cancel_button.click(fn=cancel_generation, outputs=search_debug)
msg_input.submit(
fn=chat_response,
inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox,
max_results_number, max_chars_number, model_dropdown,
max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repeat_penalty_slider],
outputs=[chatbot, search_debug],
)
demo.launch()
|