Spaces:
Runtime error
Runtime error
Simon Sorg
commited on
Commit
·
b954f30
1
Parent(s):
c897860
feat: add compute
Browse files- valid_efficiency_score.py +107 -29
valid_efficiency_score.py
CHANGED
@@ -11,46 +11,49 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
22 |
-
@
|
23 |
-
title
|
24 |
-
|
25 |
-
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
This
|
32 |
"""
|
33 |
|
34 |
-
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
Calculates how good
|
38 |
Args:
|
39 |
predictions: list of predictions to score. Each predictions
|
40 |
should be a string with tokens separated by spaces.
|
41 |
references: list of reference for each prediction. Each
|
42 |
reference should be a string with tokens separated by spaces.
|
|
|
|
|
|
|
|
|
|
|
43 |
Returns:
|
44 |
-
|
45 |
-
another_score: description of the second score,
|
46 |
Examples:
|
47 |
-
|
48 |
-
to use the function.
|
49 |
-
|
50 |
-
>>> my_new_module = evaluate.load("my_new_module")
|
51 |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
# TODO: Define external resources urls if needed
|
@@ -59,10 +62,9 @@ BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class ValidEfficiencyScore(evaluate.Metric):
|
62 |
-
"""
|
63 |
|
64 |
def _info(self):
|
65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
return evaluate.MetricInfo(
|
67 |
# This is the description that will appear on the modules page.
|
68 |
module_type="metric",
|
@@ -71,14 +73,14 @@ class ValidEfficiencyScore(evaluate.Metric):
|
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
features=datasets.Features({
|
74 |
-
'predictions': datasets.Value('
|
75 |
-
'references': datasets.Value('
|
76 |
}),
|
77 |
# Homepage of the module for documentation
|
78 |
homepage="http://module.homepage",
|
79 |
# Additional links to the codebase or references
|
80 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=[
|
82 |
)
|
83 |
|
84 |
def _download_and_prepare(self, dl_manager):
|
@@ -86,10 +88,86 @@ class ValidEfficiencyScore(evaluate.Metric):
|
|
86 |
# TODO: Download external resources if needed
|
87 |
pass
|
88 |
|
89 |
-
def _compute(self, predictions, references):
|
90 |
-
"""Returns the
|
91 |
# TODO: Compute the different scores of the module
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return {
|
94 |
-
"
|
95 |
-
}
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
#
|
15 |
+
# This is a module to compute the Valid Efficiency Score (VES) of a model's predictions for text-to-SQL tasks as
|
16 |
+
# proposed in "Can LLM Already Serve as a Database Interface?
|
17 |
+
# A Big Bench for Large-Scale Database Grounded Text-to-SQLs" (Li et al., 2023)
|
18 |
|
19 |
import evaluate
|
20 |
import datasets
|
21 |
+
from time import time
|
22 |
+
import numpy as np
|
23 |
+
from math import sqrt
|
24 |
|
|
|
|
|
25 |
_CITATION = """\
|
26 |
+
@article{li2023can,
|
27 |
+
title={Can llm already serve as a database interface? a big bench for large-scale database grounded text-to-sqls},
|
28 |
+
author={Li, Jinyang and Hui, Binyuan and Qu, Ge and Li, Binhua and Yang, Jiaxi and Li, Bowen and Wang, Bailin and Qin, Bowen and Cao, Rongyu and Geng, Ruiying and others},
|
29 |
+
journal={arXiv preprint arXiv:2305.03111},
|
30 |
+
year={2023}
|
31 |
}
|
32 |
"""
|
33 |
|
|
|
34 |
_DESCRIPTION = """\
|
35 |
+
This module computes the Valid Efficiency Score (VES) of a model's predictions for text-to-SQL tasks.
|
36 |
"""
|
37 |
|
|
|
|
|
38 |
_KWARGS_DESCRIPTION = """
|
39 |
+
Calculates how good the predictions are given some ground truth sql queries, using the Valid Efficiency Score (VES).
|
40 |
Args:
|
41 |
predictions: list of predictions to score. Each predictions
|
42 |
should be a string with tokens separated by spaces.
|
43 |
references: list of reference for each prediction. Each
|
44 |
reference should be a string with tokens separated by spaces.
|
45 |
+
execute: function that takes a list of sql queries and returns a list of results, one for each query.
|
46 |
+
Results should be a list of tuples, each tuple containing the values of a row.
|
47 |
+
filter_func: function that takes a string and returns a boolean.
|
48 |
+
If True, the string is kept, otherwise it is dropped.
|
49 |
+
num_executions: number of times to execute each sql query to get the execution time.
|
50 |
Returns:
|
51 |
+
ves: Valid Efficiency Score of the predictions compared to the references.
|
|
|
52 |
Examples:
|
53 |
+
>>> my_new_module = evaluate.load("valid_efficiency_score")
|
|
|
|
|
|
|
54 |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
55 |
>>> print(results)
|
56 |
+
{'ves': 1.0}
|
57 |
"""
|
58 |
|
59 |
# TODO: Define external resources urls if needed
|
|
|
62 |
|
63 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
64 |
class ValidEfficiencyScore(evaluate.Metric):
|
65 |
+
"""Valid Efficiency Score (VES) metric for text-to-SQL tasks."""
|
66 |
|
67 |
def _info(self):
|
|
|
68 |
return evaluate.MetricInfo(
|
69 |
# This is the description that will appear on the modules page.
|
70 |
module_type="metric",
|
|
|
73 |
inputs_description=_KWARGS_DESCRIPTION,
|
74 |
# This defines the format of each prediction and reference
|
75 |
features=datasets.Features({
|
76 |
+
'predictions': datasets.Value('string'),
|
77 |
+
'references': datasets.Value('string'),
|
78 |
}),
|
79 |
# Homepage of the module for documentation
|
80 |
homepage="http://module.homepage",
|
81 |
# Additional links to the codebase or references
|
82 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
83 |
+
reference_urls=[]
|
84 |
)
|
85 |
|
86 |
def _download_and_prepare(self, dl_manager):
|
|
|
88 |
# TODO: Download external resources if needed
|
89 |
pass
|
90 |
|
91 |
+
def _compute(self, predictions, references, execute, filter_func=None, num_executions=100):
|
92 |
+
"""Returns the valid efficiency score of the predictions compared to the references."""
|
93 |
# TODO: Compute the different scores of the module
|
94 |
+
if len(predictions) != len(references):
|
95 |
+
raise ValueError("Predictions and references must have the same number of elements.")
|
96 |
+
# Run filter_func on predictions and references if needed
|
97 |
+
filtered_predictions = []
|
98 |
+
filtered_references = []
|
99 |
+
passing_reference_only = 0
|
100 |
+
if filter_func is not None:
|
101 |
+
for prediction, reference in zip(predictions, references):
|
102 |
+
# Only keep if both prediction and reference pass the filter
|
103 |
+
if filter_func(prediction) and filter_func(reference):
|
104 |
+
filtered_predictions.append(prediction)
|
105 |
+
filtered_references.append(reference)
|
106 |
+
# If only the reference passes the filter, count it
|
107 |
+
elif filter_func(reference):
|
108 |
+
passing_reference_only += 1
|
109 |
+
|
110 |
+
# Execute ground truth sql queries to get the ground truth results and the time it takes to execute them
|
111 |
+
ground_results = execute(filtered_references)
|
112 |
+
reference_times = np.zeros(num_executions)
|
113 |
+
for i in range(num_executions):
|
114 |
+
start_time = time()
|
115 |
+
execute(filtered_references)
|
116 |
+
end_time = time()
|
117 |
+
reference_times[i] = end_time - start_time
|
118 |
+
|
119 |
+
# Execute predicted sql queries to get the predicted results and the time it takes to execute them
|
120 |
+
predicted_results = execute(filtered_predictions)
|
121 |
+
prediction_times = np.zeros(num_executions)
|
122 |
+
for i in range(num_executions):
|
123 |
+
start_time = time()
|
124 |
+
execute(filtered_predictions)
|
125 |
+
end_time = time()
|
126 |
+
prediction_times[i] = end_time - start_time
|
127 |
+
|
128 |
+
# Get mean, std and 3 sigma interval
|
129 |
+
reference_mean = np.mean(reference_times)
|
130 |
+
reference_std = np.std(reference_times)
|
131 |
+
lower_bound = reference_mean - 3 * reference_std
|
132 |
+
upper_bound = reference_mean + 3 * reference_std
|
133 |
+
# Drop outliers
|
134 |
+
filtered_reference_times = reference_times[(reference_times >= lower_bound) & (reference_times <= upper_bound)]
|
135 |
+
|
136 |
+
# Get mean, std and 3 sigma interval
|
137 |
+
prediction_mean = np.mean(prediction_times)
|
138 |
+
prediction_std = np.std(prediction_times)
|
139 |
+
lower_bound = prediction_mean - 3 * prediction_std
|
140 |
+
upper_bound = prediction_mean + 3 * prediction_std
|
141 |
+
# Drop outliers
|
142 |
+
filtered_prediction_times = prediction_times[
|
143 |
+
(prediction_times >= lower_bound) & (prediction_times <= upper_bound)]
|
144 |
+
|
145 |
+
# Get new means as e_scores
|
146 |
+
reference_mean = np.mean(filtered_reference_times)
|
147 |
+
prediction_mean = np.mean(filtered_prediction_times)
|
148 |
+
|
149 |
+
r_value = sqrt(reference_mean / prediction_mean)
|
150 |
+
|
151 |
+
# Run filter_func on predictions and references if needed
|
152 |
+
filtered_predictions = []
|
153 |
+
filtered_references = []
|
154 |
+
divider = 0
|
155 |
+
if filter_func is not None:
|
156 |
+
for prediction, reference in zip(predictions, references):
|
157 |
+
# Only keep if both prediction and reference pass the filter
|
158 |
+
pred_bool = filter_func(prediction)
|
159 |
+
ref_bool = filter_func(reference)
|
160 |
+
if pred_bool and ref_bool:
|
161 |
+
filtered_predictions.append(prediction)
|
162 |
+
filtered_references.append(reference)
|
163 |
+
divider += 1
|
164 |
+
# If only the reference passes the filter, count it
|
165 |
+
elif pred_bool != ref_bool:
|
166 |
+
divider += 1
|
167 |
+
|
168 |
+
accuracy = sum(
|
169 |
+
execute(i) == execute(j) for i, j in zip(filtered_predictions, filtered_references)) / divider
|
170 |
+
|
171 |
return {
|
172 |
+
"ves": accuracy * r_value,
|
173 |
+
}
|