Spaces:
Runtime error
Runtime error
File size: 9,688 Bytes
73d2546 0d951c1 73d2546 99b6299 73d2546 99b6299 410bc42 73d2546 99b6299 73d2546 410bc42 73d2546 99b6299 73d2546 99b6299 73d2546 99b6299 73d2546 99b6299 73d2546 99b6299 73d2546 99b6299 73d2546 99b6299 73d2546 99b6299 73d2546 0d951c1 73d2546 99b6299 73d2546 99b6299 73d2546 99b6299 73d2546 99b6299 73d2546 0d951c1 73d2546 0d951c1 73d2546 99b6299 73d2546 0d951c1 73d2546 0d951c1 99b6299 0d951c1 99b6299 0d951c1 99b6299 0d951c1 99b6299 410bc42 99b6299 410bc42 99b6299 410bc42 99b6299 410bc42 99b6299 a3de672 73d2546 410bc42 0d951c1 410bc42 99b6299 73d2546 410bc42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import os
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from dotenv import load_dotenv
import torch
load_dotenv()
api_token = os.getenv("HF_TOKEN")
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load and split PDF document
def load_doc(list_file_path, chunk_size=512, chunk_overlap=64):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database with improved embedding model and parameters
def create_db(splits, n_trees=5, search_k=100):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vectordb = FAISS.from_documents(splits, embeddings, n_trees=n_trees, search_k=search_k)
return vectordb
# Query expansion and document filtering functions
def expand_query(query):
expanded_queries = [query, query + " additional term", query + " another term"]
return expanded_queries
def filter_documents(docs):
filtered_docs = [doc for doc in docs if "important" in doc.page_content]
return filtered_docs
# Initialize langchain LLM chain with query expansion and document filtering
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
query_expansion=expand_query,
document_filtering=filter_documents
)
return qa_chain
# Pre-process and vectorize local PDFs
def pre_process_pdfs(directory="pdfs"):
file_paths = [os.path.join(directory, f) for f in os.listdir(directory) if f.endswith('.pdf')]
doc_splits = load_doc(file_paths)
vector_db = create_db(doc_splits)
return vector_db
# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Database created!"
# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
print("llm_name: ", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "QA chain initialized. Chatbot is ready!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
# Read persona from .md file
def load_persona(file_path):
with open(file_path, 'r') as file:
return file.read()
# Inject persona into response
def persona_template(response_text, persona_text):
return f"{persona_text}\n\n{response_text}"
def conversation(qa_chain, message, history, persona_text):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if "Helpful Answer:" in response_answer:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_answer = persona_template(response_answer, persona_text)
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response2_page, response_source3, source3_page
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file.name
list_file_path.append(file_path)
return list_file_path
def demo():
persona_text = load_persona('persona.md')
with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
vector_db = gr.State(pre_process_pdfs("ILYA/pdfs")) # Pre-process PDFs on initialization with correct path
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF Chatbot</h1><center>")
gr.Markdown("""<b>Interact with Your PDF Documents!</b> This AI agent performs retrieval-augmented generation (RAG) on PDF documents. Hosted on Hugging Face Hub for demonstration purposes. \
<b>Do not upload confidential documents.</b>""")
# Interface for static pre-selected documents
gr.Markdown("<b>Pre-Selected Documents</b>")
gr.Textbox(value="Document 1: Introduction to AI.pdf", show_label=False, interactive=False)
gr.Textbox(value="Document 2: Advanced Machine Learning.pdf", show_label=False, interactive=False)
gr.Markdown("<b>Upload Your PDF Documents</b>")
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
db_btn = gr.Button("Create vector database")
db_progress = gr.Textbox(value="Not initialized", show_label=False)
gr.Markdown("<b>Select Large Language Model (LLM) and Configure Parameters</b>")
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated", interactive=True)
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top-K", info="Number of tokens to select the next token from", interactive=True)
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
gr.Markdown("<b>Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source document", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
msg = gr.Textbox(placeholder="Ask a question", container=True)
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Preprocessing events
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
# Chatbot events
msg.submit(conversation, inputs=[qa_chain, msg, chatbot, gr.State(value=persona_text)], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot, gr.State(value=persona_text)], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |