Spaces:
Runtime error
Runtime error
LOUIS SANNA
commited on
Commit
·
35c9187
1
Parent(s):
6d2199d
feat(loggign)
Browse files- .vscode/settings.json +3 -0
- app.py +202 -358
- climateqa/logging.py +70 -0
- climateqa/vectorstore.py +0 -18
.vscode/settings.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"python.pythonPath": "/Users/louissanna/opt/anaconda3/envs/anything-question-answering/bin/python"
|
3 |
+
}
|
app.py
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import os
|
5 |
-
from datetime import datetime
|
6 |
|
7 |
from utils import create_user_id
|
8 |
|
9 |
-
from azure.storage.fileshare import ShareServiceClient
|
10 |
|
11 |
# Langchain
|
12 |
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
-
from langchain.schema import AIMessage, HumanMessage
|
14 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
15 |
|
16 |
# ClimateQ&A imports
|
17 |
from climateqa.llm import get_llm
|
18 |
-
from climateqa.
|
|
|
19 |
from climateqa.chains import load_reformulation_chain
|
20 |
from climateqa.vectorstore import get_pinecone_vectorstore
|
21 |
from climateqa.retriever import ClimateQARetriever
|
@@ -24,6 +19,7 @@ from climateqa.prompts import audience_prompts
|
|
24 |
# Load environment variables in local mode
|
25 |
try:
|
26 |
from dotenv import load_dotenv
|
|
|
27 |
load_dotenv()
|
28 |
except Exception as e:
|
29 |
pass
|
@@ -36,7 +32,6 @@ theme = gr.themes.Base(
|
|
36 |
)
|
37 |
|
38 |
|
39 |
-
|
40 |
init_prompt = ""
|
41 |
|
42 |
system_template = {
|
@@ -44,47 +39,40 @@ system_template = {
|
|
44 |
"content": init_prompt,
|
45 |
}
|
46 |
|
47 |
-
account_key = os.environ["BLOB_ACCOUNT_KEY"]
|
48 |
-
if len(account_key) == 86:
|
49 |
-
account_key += "=="
|
50 |
-
|
51 |
-
credential = {
|
52 |
-
"account_key": account_key,
|
53 |
-
"account_name": os.environ["BLOB_ACCOUNT_NAME"],
|
54 |
-
}
|
55 |
-
|
56 |
-
account_url = os.environ["BLOB_ACCOUNT_URL"]
|
57 |
-
file_share_name = "climategpt"
|
58 |
-
service = ShareServiceClient(account_url=account_url, credential=credential)
|
59 |
-
share_client = service.get_share_client(file_share_name)
|
60 |
-
|
61 |
user_id = create_user_id()
|
62 |
|
63 |
-
|
64 |
# ClimateQ&A core functions
|
65 |
-
|
66 |
|
67 |
from langchain.callbacks.base import BaseCallbackHandler
|
68 |
from queue import Queue, Empty
|
69 |
from threading import Thread
|
70 |
from collections.abc import Generator
|
71 |
from langchain.schema import LLMResult
|
72 |
-
from typing import Any, Union,Dict,List
|
73 |
from queue import SimpleQueue
|
|
|
74 |
# # Create a Queue
|
75 |
# Q = Queue()
|
76 |
|
77 |
import re
|
78 |
|
|
|
79 |
def parse_output_llm_with_sources(output):
|
80 |
# Split the content into a list of text and "[Doc X]" references
|
81 |
-
content_parts = re.split(r
|
82 |
parts = []
|
83 |
for part in content_parts:
|
84 |
if part.startswith("Doc"):
|
85 |
subparts = part.split(",")
|
86 |
-
subparts = [
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
88 |
parts.append("".join(subparts))
|
89 |
else:
|
90 |
parts.append(part)
|
@@ -92,8 +80,7 @@ def parse_output_llm_with_sources(output):
|
|
92 |
return content_parts
|
93 |
|
94 |
|
95 |
-
|
96 |
-
job_done = object() # signals the processing is done
|
97 |
|
98 |
|
99 |
class StreamingGradioCallbackHandler(BaseCallbackHandler):
|
@@ -125,45 +112,49 @@ class StreamingGradioCallbackHandler(BaseCallbackHandler):
|
|
125 |
self.q.put(job_done)
|
126 |
|
127 |
|
128 |
-
|
129 |
-
|
130 |
# Create embeddings function and LLM
|
131 |
-
embeddings_function = HuggingFaceEmbeddings(
|
|
|
|
|
132 |
|
133 |
|
134 |
# Create vectorstore and retriever
|
135 |
vectorstore = get_pinecone_vectorstore(embeddings_function)
|
136 |
|
137 |
-
|
138 |
# ClimateQ&A Streaming
|
139 |
# From https://github.com/gradio-app/gradio/issues/5345
|
140 |
# And https://stackoverflow.com/questions/76057076/how-to-stream-agents-response-in-langchain
|
141 |
-
|
142 |
|
143 |
from threading import Thread
|
144 |
|
145 |
-
import json
|
146 |
|
147 |
-
def answer_user(query,query_example,history):
|
148 |
if len(query) <= 2:
|
149 |
raise Exception("Please ask a longer question")
|
150 |
return query, history + [[query, ". . ."]]
|
151 |
|
152 |
-
|
|
|
153 |
return query_example, history + [[query_example, ". . ."]]
|
154 |
|
155 |
-
def fetch_sources(query,sources):
|
156 |
|
|
|
157 |
# Prepare default values
|
158 |
if len(sources) == 0:
|
159 |
sources = ["IPCC"]
|
160 |
|
161 |
-
llm_reformulation = get_llm(
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
reformulation_chain = load_reformulation_chain(llm_reformulation)
|
164 |
|
165 |
# Calculate language
|
166 |
-
output_reformulation = reformulation_chain({"query":query})
|
167 |
question = output_reformulation["question"]
|
168 |
language = output_reformulation["language"]
|
169 |
|
@@ -171,23 +162,23 @@ def fetch_sources(query,sources):
|
|
171 |
docs = retriever.get_relevant_documents(question)
|
172 |
|
173 |
if len(docs) > 0:
|
174 |
-
|
175 |
# Already display the sources
|
176 |
sources_text = []
|
177 |
for i, d in enumerate(docs, 1):
|
178 |
sources_text.append(make_html_source(d, i))
|
179 |
citations_text = "".join(sources_text)
|
180 |
docs_text = "\n\n".join([d.page_content for d in docs])
|
181 |
-
return "",citations_text,docs_text,question,language
|
182 |
else:
|
183 |
-
sources_text =
|
|
|
|
|
184 |
citations_text = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
185 |
docs_text = ""
|
186 |
-
return "",citations_text,docs_text,question,language
|
187 |
-
|
188 |
|
189 |
-
def answer_bot(query,history,docs,question,language,audience):
|
190 |
|
|
|
191 |
if audience == "Children":
|
192 |
audience_prompt = audience_prompts["children"]
|
193 |
elif audience == "General public":
|
@@ -200,36 +191,52 @@ def answer_bot(query,history,docs,question,language,audience):
|
|
200 |
# Prepare Queue for streaming LLMs
|
201 |
Q = SimpleQueue()
|
202 |
|
203 |
-
llm_streaming = get_llm(
|
204 |
-
|
|
|
|
|
|
|
|
|
205 |
)
|
206 |
|
207 |
qa_chain = load_qa_chain_with_text(llm_streaming)
|
208 |
|
209 |
-
def threaded_chain(question,audience,language,docs):
|
210 |
try:
|
211 |
-
response = qa_chain(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
Q.put(response)
|
213 |
Q.put(job_done)
|
214 |
except Exception as e:
|
215 |
print(e)
|
216 |
-
|
217 |
history[-1][1] = ""
|
218 |
-
|
219 |
-
textbox=gr.Textbox(placeholder=". . .",show_label=False,scale=1,lines = 1,interactive = False)
|
220 |
|
|
|
|
|
|
|
221 |
|
222 |
if len(docs) > 0:
|
223 |
-
|
224 |
# Start thread for streaming
|
225 |
thread = Thread(
|
226 |
-
target=threaded_chain,
|
227 |
-
kwargs={
|
|
|
|
|
|
|
|
|
|
|
228 |
)
|
229 |
thread.start()
|
230 |
|
231 |
while True:
|
232 |
-
next_item = Q.get(block=True)
|
233 |
|
234 |
if next_item is job_done:
|
235 |
break
|
@@ -237,88 +244,27 @@ def answer_bot(query,history,docs,question,language,audience):
|
|
237 |
new_paragraph = history[-1][1] + next_item
|
238 |
new_paragraph = parse_output_llm_with_sources(new_paragraph)
|
239 |
history[-1][1] = new_paragraph
|
240 |
-
yield textbox,history
|
241 |
else:
|
242 |
pass
|
243 |
thread.join()
|
244 |
|
245 |
-
|
246 |
-
timestamp = str(datetime.now().timestamp())
|
247 |
-
file = timestamp + ".json"
|
248 |
-
prompt = history[-1][0]
|
249 |
-
logs = {
|
250 |
-
"user_id": str(user_id),
|
251 |
-
"prompt": prompt,
|
252 |
-
"query": prompt,
|
253 |
-
"question":question,
|
254 |
-
"docs":docs,
|
255 |
-
"answer": history[-1][1],
|
256 |
-
"time": timestamp,
|
257 |
-
}
|
258 |
-
log_on_azure(file, logs, share_client)
|
259 |
-
|
260 |
-
|
261 |
|
262 |
else:
|
263 |
complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
264 |
history[-1][1] += complete_response
|
265 |
-
yield "",history
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
# history_langchain_format = []
|
270 |
-
# for human, ai in history:
|
271 |
-
# history_langchain_format.append(HumanMessage(content=human))
|
272 |
-
# history_langchain_format.append(AIMessage(content=ai))
|
273 |
-
# history_langchain_format.append(HumanMessage(content=message)
|
274 |
-
# for next_token, content in stream(message):
|
275 |
-
# yield(content)
|
276 |
-
|
277 |
-
# thread = Thread(target=threaded_chain, kwargs={"query":message,"audience":audience_prompt})
|
278 |
-
# thread.start()
|
279 |
-
|
280 |
-
# history[-1][1] = ""
|
281 |
-
# while True:
|
282 |
-
# next_item = Q.get(block=True) # Blocks until an input is available
|
283 |
-
|
284 |
-
# print(type(next_item))
|
285 |
-
# if next_item is job_done:
|
286 |
-
# continue
|
287 |
-
|
288 |
-
# elif isinstance(next_item, dict): # assuming LLMResult is a dictionary
|
289 |
-
# response = next_item
|
290 |
-
# if "source_documents" in response and len(response["source_documents"]) > 0:
|
291 |
-
# sources_text = []
|
292 |
-
# for i, d in enumerate(response["source_documents"], 1):
|
293 |
-
# sources_text.append(make_html_source(d, i))
|
294 |
-
# sources_text = "\n\n".join([f"Query used for retrieval:\n{response['question']}"] + sources_text)
|
295 |
-
# # history[-1][1] += next_item["answer"]
|
296 |
-
# # history[-1][1] += "\n\n" + sources_text
|
297 |
-
# yield "", history, sources_text
|
298 |
-
|
299 |
-
# else:
|
300 |
-
# sources_text = "⚠️ No relevant passages found in the scientific reports (IPCC and IPBES)"
|
301 |
-
# complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
302 |
-
# history[-1][1] += "\n\n" + complete_response
|
303 |
-
# yield "", history, sources_text
|
304 |
-
# break
|
305 |
-
|
306 |
-
# elif isinstance(next_item, str):
|
307 |
-
# new_paragraph = history[-1][1] + next_item
|
308 |
-
# new_paragraph = parse_output_llm_with_sources(new_paragraph)
|
309 |
-
# history[-1][1] = new_paragraph
|
310 |
-
# yield "", history, ""
|
311 |
-
|
312 |
-
# thread.join()
|
313 |
-
|
314 |
-
#---------------------------------------------------------------------------
|
315 |
# ClimateQ&A core functions
|
316 |
-
|
317 |
|
318 |
|
319 |
-
def make_html_source(source,i):
|
320 |
meta = source.metadata
|
321 |
-
content = source.page_content.split(":",1)[1].strip()
|
322 |
return f"""
|
323 |
<div class="card">
|
324 |
<div class="card-content">
|
@@ -335,144 +281,9 @@ def make_html_source(source,i):
|
|
335 |
"""
|
336 |
|
337 |
|
338 |
-
|
339 |
-
# def chat(
|
340 |
-
# user_id: str,
|
341 |
-
# query: str,
|
342 |
-
# history: list = [system_template],
|
343 |
-
# report_type: str = "IPCC",
|
344 |
-
# threshold: float = 0.555,
|
345 |
-
# ) -> tuple:
|
346 |
-
# """retrieve relevant documents in the document store then query gpt-turbo
|
347 |
-
|
348 |
-
# Args:
|
349 |
-
# query (str): user message.
|
350 |
-
# history (list, optional): history of the conversation. Defaults to [system_template].
|
351 |
-
# report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
|
352 |
-
# threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.
|
353 |
-
|
354 |
-
# Yields:
|
355 |
-
# tuple: chat gradio format, chat openai format, sources used.
|
356 |
-
# """
|
357 |
-
|
358 |
-
# if report_type not in ["IPCC","IPBES"]: report_type = "all"
|
359 |
-
# print("Searching in ",report_type," reports")
|
360 |
-
# # if report_type == "All available":
|
361 |
-
# # retriever = retrieve_all
|
362 |
-
# # elif report_type == "IPCC only":
|
363 |
-
# # retriever = retrieve_giec
|
364 |
-
# # else:
|
365 |
-
# # raise Exception("report_type arg should be in (All available, IPCC only)")
|
366 |
-
|
367 |
-
# reformulated_query = openai.Completion.create(
|
368 |
-
# engine="EkiGPT",
|
369 |
-
# prompt=get_reformulation_prompt(query),
|
370 |
-
# temperature=0,
|
371 |
-
# max_tokens=128,
|
372 |
-
# stop=["\n---\n", "<|im_end|>"],
|
373 |
-
# )
|
374 |
-
# reformulated_query = reformulated_query["choices"][0]["text"]
|
375 |
-
# reformulated_query, language = reformulated_query.split("\n")
|
376 |
-
# language = language.split(":")[1].strip()
|
377 |
-
|
378 |
-
|
379 |
-
# sources = retrieve_with_summaries(reformulated_query,retriever,k_total = 10,k_summary = 3,as_dict = True,source = report_type.lower(),threshold = threshold)
|
380 |
-
# response_retriever = {
|
381 |
-
# "language":language,
|
382 |
-
# "reformulated_query":reformulated_query,
|
383 |
-
# "query":query,
|
384 |
-
# "sources":sources,
|
385 |
-
# }
|
386 |
-
|
387 |
-
# # docs = [d for d in retriever.retrieve(query=reformulated_query, top_k=10) if d.score > threshold]
|
388 |
-
# messages = history + [{"role": "user", "content": query}]
|
389 |
-
|
390 |
-
# if len(sources) > 0:
|
391 |
-
# docs_string = []
|
392 |
-
# docs_html = []
|
393 |
-
# for i, d in enumerate(sources, 1):
|
394 |
-
# docs_string.append(f"📃 Doc {i}: {d['meta']['short_name']} page {d['meta']['page_number']}\n{d['content']}")
|
395 |
-
# docs_html.append(make_html_source(d,i))
|
396 |
-
# docs_string = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
|
397 |
-
# docs_html = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_html)
|
398 |
-
# messages.append({"role": "system", "content": f"{sources_prompt}\n\n{docs_string}\n\nAnswer in {language}:"})
|
399 |
-
|
400 |
-
|
401 |
-
# response = openai.Completion.create(
|
402 |
-
# engine="EkiGPT",
|
403 |
-
# prompt=to_completion(messages),
|
404 |
-
# temperature=0, # deterministic
|
405 |
-
# stream=True,
|
406 |
-
# max_tokens=1024,
|
407 |
-
# )
|
408 |
-
|
409 |
-
# complete_response = ""
|
410 |
-
# messages.pop()
|
411 |
-
|
412 |
-
# messages.append({"role": "assistant", "content": complete_response})
|
413 |
-
# timestamp = str(datetime.now().timestamp())
|
414 |
-
# file = user_id + timestamp + ".json"
|
415 |
-
# logs = {
|
416 |
-
# "user_id": user_id,
|
417 |
-
# "prompt": query,
|
418 |
-
# "retrived": sources,
|
419 |
-
# "report_type": report_type,
|
420 |
-
# "prompt_eng": messages[0],
|
421 |
-
# "answer": messages[-1]["content"],
|
422 |
-
# "time": timestamp,
|
423 |
-
# }
|
424 |
-
# log_on_azure(file, logs, share_client)
|
425 |
-
|
426 |
-
# for chunk in response:
|
427 |
-
# if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
|
428 |
-
# complete_response += chunk_message
|
429 |
-
# messages[-1]["content"] = complete_response
|
430 |
-
# gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
431 |
-
# yield gradio_format, messages, docs_html
|
432 |
-
|
433 |
-
# else:
|
434 |
-
# docs_string = "⚠️ No relevant passages found in the climate science reports (IPCC and IPBES)"
|
435 |
-
# complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
|
436 |
-
# messages.append({"role": "assistant", "content": complete_response})
|
437 |
-
# gradio_format = make_pairs([a["content"] for a in messages[1:]])
|
438 |
-
# yield gradio_format, messages, docs_string
|
439 |
-
|
440 |
-
|
441 |
-
def save_feedback(feed: str, user_id):
|
442 |
-
if len(feed) > 1:
|
443 |
-
timestamp = str(datetime.now().timestamp())
|
444 |
-
file = user_id + timestamp + ".json"
|
445 |
-
logs = {
|
446 |
-
"user_id": user_id,
|
447 |
-
"feedback": feed,
|
448 |
-
"time": timestamp,
|
449 |
-
}
|
450 |
-
log_on_azure(file, logs, share_client)
|
451 |
-
return "Feedback submitted, thank you!"
|
452 |
-
|
453 |
-
|
454 |
def reset_textbox():
|
455 |
return gr.update(value="")
|
456 |
|
457 |
-
import json
|
458 |
-
|
459 |
-
def log_on_azure(file, logs, share_client):
|
460 |
-
logs = json.dumps(logs)
|
461 |
-
print(type(logs))
|
462 |
-
file_client = share_client.get_file_client(file)
|
463 |
-
print("Uploading logs to Azure Blob Storage")
|
464 |
-
print("----------------------------------")
|
465 |
-
print("")
|
466 |
-
print(logs)
|
467 |
-
file_client.upload_file(logs)
|
468 |
-
print("Logs uploaded to Azure Blob Storage")
|
469 |
-
|
470 |
-
|
471 |
-
# def disable_component():
|
472 |
-
# return gr.update(interactive = False)
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
|
477 |
# --------------------------------------------------------------------
|
478 |
# Gradio
|
@@ -509,29 +320,33 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
509 |
# user_id_state = gr.State([user_id])
|
510 |
|
511 |
with gr.Tab("🌍 ClimateQ&A"):
|
512 |
-
|
513 |
with gr.Row(elem_id="chatbot-row"):
|
514 |
with gr.Column(scale=2):
|
515 |
# state = gr.State([system_template])
|
516 |
bot = gr.Chatbot(
|
517 |
-
value=[[None,init_prompt]],
|
518 |
-
show_copy_button=True,
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
522 |
|
|
|
523 |
|
524 |
-
with gr.Row(elem_id
|
525 |
-
textbox=gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
# submit_button = gr.Button(">",scale = 1,elem_id = "submit-button")
|
527 |
|
528 |
-
|
529 |
-
with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):
|
530 |
-
|
531 |
-
|
532 |
with gr.Tabs() as tabs:
|
533 |
-
with gr.TabItem("📝 Examples",elem_id
|
534 |
-
|
535 |
examples_hidden = gr.Textbox(elem_id="hidden-message")
|
536 |
|
537 |
examples_questions = gr.Examples(
|
@@ -575,14 +390,16 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
575 |
# cache_examples=True,
|
576 |
)
|
577 |
|
578 |
-
with gr.Tab("📚 Citations",elem_id
|
579 |
-
sources_textbox = gr.HTML(
|
|
|
|
|
580 |
docs_textbox = gr.State("")
|
581 |
|
582 |
-
with gr.Tab("⚙️ Configuration",elem_id
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
|
587 |
dropdown_sources = gr.CheckboxGroup(
|
588 |
["IPCC", "IPBES"],
|
@@ -592,56 +409,106 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
592 |
)
|
593 |
|
594 |
dropdown_audience = gr.Dropdown(
|
595 |
-
["Children","General public","Experts"],
|
596 |
label="Select audience",
|
597 |
value="Experts",
|
598 |
interactive=True,
|
599 |
)
|
600 |
|
601 |
-
output_query = gr.Textbox(
|
602 |
-
|
603 |
-
|
604 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
|
606 |
# textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])
|
607 |
-
(
|
608 |
-
.submit(
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
)
|
614 |
|
615 |
-
(
|
616 |
-
.change(
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
621 |
)
|
622 |
# submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=True).then(
|
623 |
# answer_bot, [textbox,bot,dropdown_audience,dropdown_sources], [textbox,bot,sources_textbox]
|
624 |
# )
|
625 |
|
|
|
|
|
|
|
626 |
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
#---------------------------------------------------------------------------------------
|
640 |
-
# OTHER TABS
|
641 |
-
#---------------------------------------------------------------------------------------
|
642 |
-
|
643 |
-
|
644 |
-
with gr.Tab("ℹ️ About ClimateQ&A",elem_classes = "max-height"):
|
645 |
with gr.Row():
|
646 |
with gr.Column(scale=1):
|
647 |
gr.Markdown(
|
@@ -660,7 +527,9 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
660 |
|
661 |
with gr.Column(scale=1):
|
662 |
gr.Markdown("![](https://i.postimg.cc/fLvsvMzM/Untitled-design-5.png)")
|
663 |
-
gr.Markdown(
|
|
|
|
|
664 |
|
665 |
gr.Markdown("## How to use ClimateQ&A")
|
666 |
with gr.Row():
|
@@ -688,7 +557,6 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
688 |
"""
|
689 |
)
|
690 |
|
691 |
-
|
692 |
with gr.Tab("📧 Contact, feedback and feature requests"):
|
693 |
gr.Markdown(
|
694 |
"""
|
@@ -702,37 +570,10 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
702 |
*This tool has been developed by the R&D lab at **Ekimetrics** (Jean Lelong, Nina Achache, Gabriel Olympie, Nicolas Chesneau, Natalia De la Calzada, Théo Alves Da Costa)*
|
703 |
"""
|
704 |
)
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
# feedback_output = gr.Textbox(label="Submit status")
|
710 |
-
# feedback_save = gr.Button(value="submit feedback")
|
711 |
-
# feedback_save.click(
|
712 |
-
# save_feedback,
|
713 |
-
# inputs=[feedback, user_id_state],
|
714 |
-
# outputs=feedback_output,
|
715 |
-
# )
|
716 |
-
# gr.Markdown(
|
717 |
-
# "If you need us to ask another climate science report or ask any question, contact us at <b>[email protected]</b>"
|
718 |
-
# )
|
719 |
-
|
720 |
-
# with gr.Column(scale=1):
|
721 |
-
# gr.Markdown("### OpenAI API")
|
722 |
-
# gr.Markdown(
|
723 |
-
# "To make climate science accessible to a wider audience, we have opened our own OpenAI API key with a monthly cap of $1000. If you already have an API key, please use it to help conserve bandwidth for others."
|
724 |
-
# )
|
725 |
-
# openai_api_key_textbox = gr.Textbox(
|
726 |
-
# placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
|
727 |
-
# show_label=False,
|
728 |
-
# lines=1,
|
729 |
-
# type="password",
|
730 |
-
# )
|
731 |
-
# openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
|
732 |
-
# openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])
|
733 |
-
|
734 |
-
with gr.Tab("📚 Sources",elem_classes = "max-height"):
|
735 |
-
gr.Markdown("""
|
736 |
| Source | Report | URL | Number of pages | Release date |
|
737 |
| --- | --- | --- | --- | --- |
|
738 |
IPCC | Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf | 32 | 2021
|
@@ -770,10 +611,12 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
770 |
IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237468/files/ipbes_assessment_spm_eca_EN.pdf | 52 | 2018
|
771 |
IPBES | Full Report. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 748 | 2018
|
772 |
IPBES | Summary for Policymakers. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 48 | 2018
|
773 |
-
"""
|
|
|
774 |
|
775 |
with gr.Tab("🛢️ Carbon Footprint"):
|
776 |
-
gr.Markdown(
|
|
|
777 |
|
778 |
Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)
|
779 |
|
@@ -787,10 +630,11 @@ Carbon emissions were measured during the development and inference process usin
|
|
787 |
Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to ClimateQ&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)
|
788 |
Or around 2 to 4 times more than a typical Google search.
|
789 |
"""
|
790 |
-
|
791 |
-
|
792 |
with gr.Tab("🪄 Changelog"):
|
793 |
-
gr.Markdown(
|
|
|
794 |
|
795 |
##### v1.1.0 - *2023-10-16*
|
796 |
- ClimateQ&A on Hugging Face is finally working again with all the new features !
|
@@ -805,7 +649,7 @@ Or around 2 to 4 times more than a typical Google search.
|
|
805 |
- Add children mode on https://climateqa.com
|
806 |
- Add follow-up questions https://climateqa.com
|
807 |
"""
|
808 |
-
|
809 |
|
810 |
demo.queue(concurrency_count=16)
|
811 |
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
from utils import create_user_id
|
4 |
|
|
|
5 |
|
6 |
# Langchain
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
8 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
9 |
|
10 |
# ClimateQ&A imports
|
11 |
from climateqa.llm import get_llm
|
12 |
+
from climateqa.logging import log
|
13 |
+
from climateqa.chains import load_qa_chain_with_text
|
14 |
from climateqa.chains import load_reformulation_chain
|
15 |
from climateqa.vectorstore import get_pinecone_vectorstore
|
16 |
from climateqa.retriever import ClimateQARetriever
|
|
|
19 |
# Load environment variables in local mode
|
20 |
try:
|
21 |
from dotenv import load_dotenv
|
22 |
+
|
23 |
load_dotenv()
|
24 |
except Exception as e:
|
25 |
pass
|
|
|
32 |
)
|
33 |
|
34 |
|
|
|
35 |
init_prompt = ""
|
36 |
|
37 |
system_template = {
|
|
|
39 |
"content": init_prompt,
|
40 |
}
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
user_id = create_user_id()
|
43 |
|
44 |
+
# ---------------------------------------------------------------------------
|
45 |
# ClimateQ&A core functions
|
46 |
+
# ---------------------------------------------------------------------------
|
47 |
|
48 |
from langchain.callbacks.base import BaseCallbackHandler
|
49 |
from queue import Queue, Empty
|
50 |
from threading import Thread
|
51 |
from collections.abc import Generator
|
52 |
from langchain.schema import LLMResult
|
53 |
+
from typing import Any, Union, Dict, List
|
54 |
from queue import SimpleQueue
|
55 |
+
|
56 |
# # Create a Queue
|
57 |
# Q = Queue()
|
58 |
|
59 |
import re
|
60 |
|
61 |
+
|
62 |
def parse_output_llm_with_sources(output):
|
63 |
# Split the content into a list of text and "[Doc X]" references
|
64 |
+
content_parts = re.split(r"\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]", output)
|
65 |
parts = []
|
66 |
for part in content_parts:
|
67 |
if part.startswith("Doc"):
|
68 |
subparts = part.split(",")
|
69 |
+
subparts = [
|
70 |
+
subpart.lower().replace("doc", "").strip() for subpart in subparts
|
71 |
+
]
|
72 |
+
subparts = [
|
73 |
+
f"<span class='doc-ref'><sup>{subpart}</sup></span>"
|
74 |
+
for subpart in subparts
|
75 |
+
]
|
76 |
parts.append("".join(subparts))
|
77 |
else:
|
78 |
parts.append(part)
|
|
|
80 |
return content_parts
|
81 |
|
82 |
|
83 |
+
job_done = object() # signals the processing is done
|
|
|
84 |
|
85 |
|
86 |
class StreamingGradioCallbackHandler(BaseCallbackHandler):
|
|
|
112 |
self.q.put(job_done)
|
113 |
|
114 |
|
|
|
|
|
115 |
# Create embeddings function and LLM
|
116 |
+
embeddings_function = HuggingFaceEmbeddings(
|
117 |
+
model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
118 |
+
)
|
119 |
|
120 |
|
121 |
# Create vectorstore and retriever
|
122 |
vectorstore = get_pinecone_vectorstore(embeddings_function)
|
123 |
|
124 |
+
# ---------------------------------------------------------------------------
|
125 |
# ClimateQ&A Streaming
|
126 |
# From https://github.com/gradio-app/gradio/issues/5345
|
127 |
# And https://stackoverflow.com/questions/76057076/how-to-stream-agents-response-in-langchain
|
128 |
+
# ---------------------------------------------------------------------------
|
129 |
|
130 |
from threading import Thread
|
131 |
|
|
|
132 |
|
133 |
+
def answer_user(query, query_example, history):
|
134 |
if len(query) <= 2:
|
135 |
raise Exception("Please ask a longer question")
|
136 |
return query, history + [[query, ". . ."]]
|
137 |
|
138 |
+
|
139 |
+
def answer_user_example(query, query_example, history):
|
140 |
return query_example, history + [[query_example, ". . ."]]
|
141 |
|
|
|
142 |
|
143 |
+
def fetch_sources(query, sources):
|
144 |
# Prepare default values
|
145 |
if len(sources) == 0:
|
146 |
sources = ["IPCC"]
|
147 |
|
148 |
+
llm_reformulation = get_llm(
|
149 |
+
max_tokens=512, temperature=0.0, verbose=True, streaming=False
|
150 |
+
)
|
151 |
+
retriever = ClimateQARetriever(
|
152 |
+
vectorstore=vectorstore, sources=sources, k_summary=3, k_total=10
|
153 |
+
)
|
154 |
reformulation_chain = load_reformulation_chain(llm_reformulation)
|
155 |
|
156 |
# Calculate language
|
157 |
+
output_reformulation = reformulation_chain({"query": query})
|
158 |
question = output_reformulation["question"]
|
159 |
language = output_reformulation["language"]
|
160 |
|
|
|
162 |
docs = retriever.get_relevant_documents(question)
|
163 |
|
164 |
if len(docs) > 0:
|
|
|
165 |
# Already display the sources
|
166 |
sources_text = []
|
167 |
for i, d in enumerate(docs, 1):
|
168 |
sources_text.append(make_html_source(d, i))
|
169 |
citations_text = "".join(sources_text)
|
170 |
docs_text = "\n\n".join([d.page_content for d in docs])
|
171 |
+
return "", citations_text, docs_text, question, language
|
172 |
else:
|
173 |
+
sources_text = (
|
174 |
+
"⚠️ No relevant passages found in the scientific reports (IPCC and IPBES)"
|
175 |
+
)
|
176 |
citations_text = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
177 |
docs_text = ""
|
178 |
+
return "", citations_text, docs_text, question, language
|
|
|
179 |
|
|
|
180 |
|
181 |
+
def answer_bot(query, history, docs, question, language, audience):
|
182 |
if audience == "Children":
|
183 |
audience_prompt = audience_prompts["children"]
|
184 |
elif audience == "General public":
|
|
|
191 |
# Prepare Queue for streaming LLMs
|
192 |
Q = SimpleQueue()
|
193 |
|
194 |
+
llm_streaming = get_llm(
|
195 |
+
max_tokens=1024,
|
196 |
+
temperature=0.0,
|
197 |
+
verbose=True,
|
198 |
+
streaming=True,
|
199 |
+
callbacks=[StreamingGradioCallbackHandler(Q), StreamingStdOutCallbackHandler()],
|
200 |
)
|
201 |
|
202 |
qa_chain = load_qa_chain_with_text(llm_streaming)
|
203 |
|
204 |
+
def threaded_chain(question, audience, language, docs):
|
205 |
try:
|
206 |
+
response = qa_chain(
|
207 |
+
{
|
208 |
+
"question": question,
|
209 |
+
"audience": audience,
|
210 |
+
"language": language,
|
211 |
+
"summaries": docs,
|
212 |
+
}
|
213 |
+
)
|
214 |
Q.put(response)
|
215 |
Q.put(job_done)
|
216 |
except Exception as e:
|
217 |
print(e)
|
218 |
+
|
219 |
history[-1][1] = ""
|
|
|
|
|
220 |
|
221 |
+
textbox = gr.Textbox(
|
222 |
+
placeholder=". . .", show_label=False, scale=1, lines=1, interactive=False
|
223 |
+
)
|
224 |
|
225 |
if len(docs) > 0:
|
|
|
226 |
# Start thread for streaming
|
227 |
thread = Thread(
|
228 |
+
target=threaded_chain,
|
229 |
+
kwargs={
|
230 |
+
"question": question,
|
231 |
+
"audience": audience_prompt,
|
232 |
+
"language": language,
|
233 |
+
"docs": docs,
|
234 |
+
},
|
235 |
)
|
236 |
thread.start()
|
237 |
|
238 |
while True:
|
239 |
+
next_item = Q.get(block=True) # Blocks until an input is available
|
240 |
|
241 |
if next_item is job_done:
|
242 |
break
|
|
|
244 |
new_paragraph = history[-1][1] + next_item
|
245 |
new_paragraph = parse_output_llm_with_sources(new_paragraph)
|
246 |
history[-1][1] = new_paragraph
|
247 |
+
yield textbox, history
|
248 |
else:
|
249 |
pass
|
250 |
thread.join()
|
251 |
|
252 |
+
log(question=question, history=history, docs=docs, user_id=user_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
else:
|
255 |
complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
256 |
history[-1][1] += complete_response
|
257 |
+
yield "", history
|
258 |
+
|
259 |
+
|
260 |
+
# ---------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
# ClimateQ&A core functions
|
262 |
+
# ---------------------------------------------------------------------------
|
263 |
|
264 |
|
265 |
+
def make_html_source(source, i):
|
266 |
meta = source.metadata
|
267 |
+
content = source.page_content.split(":", 1)[1].strip()
|
268 |
return f"""
|
269 |
<div class="card">
|
270 |
<div class="card-content">
|
|
|
281 |
"""
|
282 |
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
def reset_textbox():
|
285 |
return gr.update(value="")
|
286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
# --------------------------------------------------------------------
|
289 |
# Gradio
|
|
|
320 |
# user_id_state = gr.State([user_id])
|
321 |
|
322 |
with gr.Tab("🌍 ClimateQ&A"):
|
|
|
323 |
with gr.Row(elem_id="chatbot-row"):
|
324 |
with gr.Column(scale=2):
|
325 |
# state = gr.State([system_template])
|
326 |
bot = gr.Chatbot(
|
327 |
+
value=[[None, init_prompt]],
|
328 |
+
show_copy_button=True,
|
329 |
+
show_label=False,
|
330 |
+
elem_id="chatbot",
|
331 |
+
layout="panel",
|
332 |
+
avatar_images=("assets/logo4.png", None),
|
333 |
+
)
|
334 |
|
335 |
+
# bot.like(vote,None,None)
|
336 |
|
337 |
+
with gr.Row(elem_id="input-message"):
|
338 |
+
textbox = gr.Textbox(
|
339 |
+
placeholder="Ask me anything here!",
|
340 |
+
show_label=False,
|
341 |
+
scale=1,
|
342 |
+
lines=1,
|
343 |
+
interactive=True,
|
344 |
+
)
|
345 |
# submit_button = gr.Button(">",scale = 1,elem_id = "submit-button")
|
346 |
|
347 |
+
with gr.Column(scale=1, variant="panel", elem_id="right-panel"):
|
|
|
|
|
|
|
348 |
with gr.Tabs() as tabs:
|
349 |
+
with gr.TabItem("📝 Examples", elem_id="tab-examples", id=0):
|
|
|
350 |
examples_hidden = gr.Textbox(elem_id="hidden-message")
|
351 |
|
352 |
examples_questions = gr.Examples(
|
|
|
390 |
# cache_examples=True,
|
391 |
)
|
392 |
|
393 |
+
with gr.Tab("📚 Citations", elem_id="tab-citations", id=1):
|
394 |
+
sources_textbox = gr.HTML(
|
395 |
+
show_label=False, elem_id="sources-textbox"
|
396 |
+
)
|
397 |
docs_textbox = gr.State("")
|
398 |
|
399 |
+
with gr.Tab("⚙️ Configuration", elem_id="tab-config", id=2):
|
400 |
+
gr.Markdown(
|
401 |
+
"Reminder: You can talk in any language, ClimateQ&A is multi-lingual!"
|
402 |
+
)
|
403 |
|
404 |
dropdown_sources = gr.CheckboxGroup(
|
405 |
["IPCC", "IPBES"],
|
|
|
409 |
)
|
410 |
|
411 |
dropdown_audience = gr.Dropdown(
|
412 |
+
["Children", "General public", "Experts"],
|
413 |
label="Select audience",
|
414 |
value="Experts",
|
415 |
interactive=True,
|
416 |
)
|
417 |
|
418 |
+
output_query = gr.Textbox(
|
419 |
+
label="Query used for retrieval",
|
420 |
+
show_label=True,
|
421 |
+
elem_id="reformulated-query",
|
422 |
+
lines=2,
|
423 |
+
interactive=False,
|
424 |
+
)
|
425 |
+
output_language = gr.Textbox(
|
426 |
+
label="Language",
|
427 |
+
show_label=True,
|
428 |
+
elem_id="language",
|
429 |
+
lines=1,
|
430 |
+
interactive=False,
|
431 |
+
)
|
432 |
|
433 |
# textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])
|
434 |
+
(
|
435 |
+
textbox.submit(
|
436 |
+
answer_user,
|
437 |
+
[textbox, examples_hidden, bot],
|
438 |
+
[textbox, bot],
|
439 |
+
queue=False,
|
440 |
+
)
|
441 |
+
.success(change_tab, None, tabs)
|
442 |
+
.success(
|
443 |
+
fetch_sources,
|
444 |
+
[textbox, dropdown_sources],
|
445 |
+
[
|
446 |
+
textbox,
|
447 |
+
sources_textbox,
|
448 |
+
docs_textbox,
|
449 |
+
output_query,
|
450 |
+
output_language,
|
451 |
+
],
|
452 |
+
)
|
453 |
+
.success(
|
454 |
+
answer_bot,
|
455 |
+
[
|
456 |
+
textbox,
|
457 |
+
bot,
|
458 |
+
docs_textbox,
|
459 |
+
output_query,
|
460 |
+
output_language,
|
461 |
+
dropdown_audience,
|
462 |
+
],
|
463 |
+
[textbox, bot],
|
464 |
+
queue=True,
|
465 |
+
)
|
466 |
+
.success(lambda x: textbox, [textbox], [textbox])
|
467 |
)
|
468 |
|
469 |
+
(
|
470 |
+
examples_hidden.change(
|
471 |
+
answer_user_example,
|
472 |
+
[textbox, examples_hidden, bot],
|
473 |
+
[textbox, bot],
|
474 |
+
queue=False,
|
475 |
+
)
|
476 |
+
.success(change_tab, None, tabs)
|
477 |
+
.success(
|
478 |
+
fetch_sources,
|
479 |
+
[textbox, dropdown_sources],
|
480 |
+
[
|
481 |
+
textbox,
|
482 |
+
sources_textbox,
|
483 |
+
docs_textbox,
|
484 |
+
output_query,
|
485 |
+
output_language,
|
486 |
+
],
|
487 |
+
)
|
488 |
+
.success(
|
489 |
+
answer_bot,
|
490 |
+
[
|
491 |
+
textbox,
|
492 |
+
bot,
|
493 |
+
docs_textbox,
|
494 |
+
output_query,
|
495 |
+
output_language,
|
496 |
+
dropdown_audience,
|
497 |
+
],
|
498 |
+
[textbox, bot],
|
499 |
+
queue=True,
|
500 |
+
)
|
501 |
+
.success(lambda x: textbox, [textbox], [textbox])
|
502 |
)
|
503 |
# submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=True).then(
|
504 |
# answer_bot, [textbox,bot,dropdown_audience,dropdown_sources], [textbox,bot,sources_textbox]
|
505 |
# )
|
506 |
|
507 |
+
# ---------------------------------------------------------------------------------------
|
508 |
+
# OTHER TABS
|
509 |
+
# ---------------------------------------------------------------------------------------
|
510 |
|
511 |
+
with gr.Tab("ℹ️ About ClimateQ&A", elem_classes="max-height"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
with gr.Row():
|
513 |
with gr.Column(scale=1):
|
514 |
gr.Markdown(
|
|
|
527 |
|
528 |
with gr.Column(scale=1):
|
529 |
gr.Markdown("![](https://i.postimg.cc/fLvsvMzM/Untitled-design-5.png)")
|
530 |
+
gr.Markdown(
|
531 |
+
"*Source : IPCC AR6 - Synthesis Report of the IPCC 6th assessment report (AR6)*"
|
532 |
+
)
|
533 |
|
534 |
gr.Markdown("## How to use ClimateQ&A")
|
535 |
with gr.Row():
|
|
|
557 |
"""
|
558 |
)
|
559 |
|
|
|
560 |
with gr.Tab("📧 Contact, feedback and feature requests"):
|
561 |
gr.Markdown(
|
562 |
"""
|
|
|
570 |
*This tool has been developed by the R&D lab at **Ekimetrics** (Jean Lelong, Nina Achache, Gabriel Olympie, Nicolas Chesneau, Natalia De la Calzada, Théo Alves Da Costa)*
|
571 |
"""
|
572 |
)
|
573 |
+
|
574 |
+
with gr.Tab("📚 Sources", elem_classes="max-height"):
|
575 |
+
gr.Markdown(
|
576 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
| Source | Report | URL | Number of pages | Release date |
|
578 |
| --- | --- | --- | --- | --- |
|
579 |
IPCC | Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf | 32 | 2021
|
|
|
611 |
IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237468/files/ipbes_assessment_spm_eca_EN.pdf | 52 | 2018
|
612 |
IPBES | Full Report. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 748 | 2018
|
613 |
IPBES | Summary for Policymakers. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 48 | 2018
|
614 |
+
"""
|
615 |
+
)
|
616 |
|
617 |
with gr.Tab("🛢️ Carbon Footprint"):
|
618 |
+
gr.Markdown(
|
619 |
+
"""
|
620 |
|
621 |
Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)
|
622 |
|
|
|
630 |
Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to ClimateQ&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)
|
631 |
Or around 2 to 4 times more than a typical Google search.
|
632 |
"""
|
633 |
+
)
|
634 |
+
|
635 |
with gr.Tab("🪄 Changelog"):
|
636 |
+
gr.Markdown(
|
637 |
+
"""
|
638 |
|
639 |
##### v1.1.0 - *2023-10-16*
|
640 |
- ClimateQ&A on Hugging Face is finally working again with all the new features !
|
|
|
649 |
- Add children mode on https://climateqa.com
|
650 |
- Add follow-up questions https://climateqa.com
|
651 |
"""
|
652 |
+
)
|
653 |
|
654 |
demo.queue(concurrency_count=16)
|
655 |
|
climateqa/logging.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
from azure.storage.fileshare import ShareServiceClient
|
6 |
+
|
7 |
+
|
8 |
+
def log(question, history, docs, user_id):
|
9 |
+
if has_blob_config():
|
10 |
+
log_in_azure(question, history, docs, user_id)
|
11 |
+
pass
|
12 |
+
|
13 |
+
|
14 |
+
def has_blob_config():
|
15 |
+
"""
|
16 |
+
Checks if the necessary environment variables for Azure Blob Storage are set.
|
17 |
+
Returns True if they are set, False otherwise.
|
18 |
+
"""
|
19 |
+
return all(
|
20 |
+
key in os.environ
|
21 |
+
for key in ["BLOB_ACCOUNT_KEY", "BLOB_ACCOUNT_NAME", "BLOB_ACCOUNT_URL"]
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def log_in_azure(question, history, docs, user_id):
|
26 |
+
timestamp = str(datetime.now().timestamp())
|
27 |
+
file_name = timestamp + ".json"
|
28 |
+
prompt = history[-1][0]
|
29 |
+
logs = {
|
30 |
+
"user_id": str(user_id),
|
31 |
+
"prompt": prompt,
|
32 |
+
"query": prompt,
|
33 |
+
"question": question,
|
34 |
+
"docs": docs,
|
35 |
+
"answer": history[-1][1],
|
36 |
+
"time": timestamp,
|
37 |
+
}
|
38 |
+
upload_azure(file_name, logs)
|
39 |
+
|
40 |
+
|
41 |
+
def get_azure_blob_client():
|
42 |
+
account_key = os.environ["BLOB_ACCOUNT_KEY"]
|
43 |
+
if len(account_key) == 86:
|
44 |
+
account_key += "=="
|
45 |
+
|
46 |
+
credential = {
|
47 |
+
"account_key": account_key,
|
48 |
+
"account_name": os.environ["BLOB_ACCOUNT_NAME"],
|
49 |
+
}
|
50 |
+
account_url = os.environ["BLOB_ACCOUNT_URL"]
|
51 |
+
file_share_name = "climategpt"
|
52 |
+
service = ShareServiceClient(account_url=account_url, credential=credential)
|
53 |
+
share_client = service.get_share_client(file_share_name)
|
54 |
+
return share_client
|
55 |
+
|
56 |
+
if has_blob_config():
|
57 |
+
share_client = get_azure_blob_client()
|
58 |
+
|
59 |
+
|
60 |
+
def upload_azure(file, logs):
|
61 |
+
logs = json.dumps(logs)
|
62 |
+
print(type(logs))
|
63 |
+
assert share_client is not None
|
64 |
+
file_client = share_client.get_file_client(file)
|
65 |
+
print("Uploading logs to Azure Blob Storage")
|
66 |
+
print("----------------------------------")
|
67 |
+
print("")
|
68 |
+
print(logs)
|
69 |
+
file_client.upload_file(logs)
|
70 |
+
print("Logs uploaded to Azure Blob Storage")
|
climateqa/vectorstore.py
CHANGED
@@ -24,21 +24,3 @@ def get_pinecone_vectorstore(embeddings,text_key = "content"):
|
|
24 |
index_name = os.getenv("PINECONE_API_INDEX")
|
25 |
vectorstore = Pinecone.from_existing_index(index_name, embeddings,text_key = text_key)
|
26 |
return vectorstore
|
27 |
-
|
28 |
-
|
29 |
-
# def get_pinecone_retriever(vectorstore,k = 10,namespace = "vectors",sources = ["IPBES","IPCC"]):
|
30 |
-
|
31 |
-
# assert isinstance(sources,list)
|
32 |
-
|
33 |
-
# # Check if all elements in the list are either IPCC or IPBES
|
34 |
-
# filter = {
|
35 |
-
# "source": { "$in":sources},
|
36 |
-
# }
|
37 |
-
|
38 |
-
# retriever = vectorstore.as_retriever(search_kwargs={
|
39 |
-
# "k": k,
|
40 |
-
# "namespace":"vectors",
|
41 |
-
# "filter":filter
|
42 |
-
# })
|
43 |
-
|
44 |
-
# return retriever
|
|
|
24 |
index_name = os.getenv("PINECONE_API_INDEX")
|
25 |
vectorstore = Pinecone.from_existing_index(index_name, embeddings,text_key = text_key)
|
26 |
return vectorstore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|