image_gen / app.py
LordFarquaad42's picture
retooled to use old hugginface pipline instead
e6b153f
raw
history blame
1.79 kB
# Python
import streamlit as st
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
def load_pipelines(device, dtype):
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype).to(device)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype).to(device)
return prior, decoder
def generate_images(prompt, negative_prompt, num_images_per_prompt, device, dtype):
with torch.cuda.amp.autocast(dtype=dtype):
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=num_images_per_prompt,
)
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
)
return decoder_output.images
st.title("Image Generator with Diffusers")
@st.cache(allow_output_mutation=True)
def init_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
return load_pipelines(device, dtype), device, dtype
(prior, decoder), device, dtype = init_model()
prompt = st.text_input("Enter a prompt:", "Anthropomorphic cat dressed as a pilot")
negative_prompt = st.text_input("Enter a negative prompt:", "")
num_images_per_prompt = st.slider("Number of images per prompt:", 1, 5, 2)
if st.button("Generate"):
images = generate_images(prompt, negative_prompt, num_images_per_prompt, device, dtype)
for img in images:
st.image(img, use_column_width=True)