Spaces:
Sleeping
Sleeping
LordFarquaad42
commited on
Commit
·
1487cce
1
Parent(s):
580f382
changed layout
Browse files- .gitignore +2 -1
- app.py +62 -105
- database.py +16 -0
- params.py +67 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
env/
|
|
|
|
1 |
+
env/
|
2 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,114 +1,71 @@
|
|
1 |
import streamlit as st
|
2 |
-
import chromadb
|
3 |
-
from chromadb.utils import embedding_functions
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
from openai import OpenAI
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
client = chromadb.PersistentClient(path="./chromadb_linux/")
|
9 |
-
MODEL_NAME: str = "mixedbread-ai/mxbai-embed-large-v1" # ~ 0.5 gb
|
10 |
-
COLLECTION_NAME: str = "scheme"
|
11 |
-
EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(
|
12 |
-
model_name=MODEL_NAME
|
13 |
-
)
|
14 |
-
schemer = client.get_collection(
|
15 |
-
name=COLLECTION_NAME,
|
16 |
-
embedding_function=EMBEDDING_FUNC,
|
17 |
-
)
|
18 |
-
DATA_AVAL: bool = schemer.count() > 0
|
19 |
APP_NAME: str = "Groove-GPT"
|
20 |
history = []
|
|
|
21 |
|
22 |
# INFO
|
23 |
st.title(APP_NAME)
|
24 |
-
st.header("What is Groovy-GPT?")
|
25 |
-
st.write(
|
26 |
-
"Groovy-GPT is a RAG (Retrieval-Augmented Generation) model that uses ChromaDB to retrieve relevant documents and then uses OpenAI's models to generate a response."
|
27 |
-
)
|
28 |
-
st.write(
|
29 |
-
"The model is trained on the MIT Scheme textbook and a handful of Discrete Math and Paradigms related content that Professor Troeger posted"
|
30 |
-
)
|
31 |
-
st.write("Data Avaliable: ", DATA_AVAL)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
)
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
},
|
92 |
-
{"role": "user", "content": user_question},
|
93 |
-
{"role": "assistant", "content": str(documents)},
|
94 |
-
{"role": "user", "content": f"Conversation History: {history}"},
|
95 |
-
],
|
96 |
-
temperature=temperature,
|
97 |
-
stream=True,
|
98 |
-
)
|
99 |
-
|
100 |
-
# history.append({user_question : response.choices[0].message.content} if remember_chat_history else {})
|
101 |
-
|
102 |
-
st.header("The Mega Schemer Says ...")
|
103 |
-
|
104 |
-
text_placeholder = st.empty()
|
105 |
-
|
106 |
-
content = ""
|
107 |
-
for i, chunk in enumerate(response):
|
108 |
-
if chunk.choices[0].delta.content is not None:
|
109 |
-
# Append the chunk content to the string
|
110 |
-
content += chunk.choices[0].delta.content
|
111 |
-
|
112 |
-
text_placeholder.markdown(content)
|
113 |
-
else:
|
114 |
-
st.write("Please provide an input and (valid) API key")
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
from openai import OpenAI
|
3 |
+
from params import params
|
4 |
+
from database import get_client
|
5 |
|
6 |
+
CLIENT = get_client()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
APP_NAME: str = "Groove-GPT"
|
8 |
history = []
|
9 |
+
st.set_page_config(layout="wide")
|
10 |
|
11 |
# INFO
|
12 |
st.title(APP_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
l_col, r_col = st.columns((3, 1))
|
15 |
+
|
16 |
+
# param column
|
17 |
+
with r_col:
|
18 |
+
(
|
19 |
+
submit_button,
|
20 |
+
remember_chat_history,
|
21 |
+
temperature,
|
22 |
+
num_samples,
|
23 |
+
access_key,
|
24 |
+
gpt_type,
|
25 |
+
) = params()
|
26 |
+
|
27 |
+
# input & response
|
28 |
+
with l_col:
|
29 |
+
user_question: str = st.text_input("Enter your groovy questions here")
|
30 |
+
|
31 |
+
# ON BUTTON CLICK
|
32 |
+
if submit_button & (access_key != "") & (user_question != ""):
|
33 |
+
openai_client = OpenAI(api_key=access_key)
|
34 |
+
|
35 |
+
with st.spinner("Loading..."):
|
36 |
+
# Perform the Chromadb query.
|
37 |
+
results = CLIENT.query(
|
38 |
+
query_texts=[user_question],
|
39 |
+
n_results=num_samples,
|
40 |
+
include=["documents"],
|
41 |
+
)
|
42 |
+
documents = results["documents"]
|
43 |
+
response = openai_client.chat.completions.create(
|
44 |
+
model="gpt-3.5-turbo",
|
45 |
+
messages=[
|
46 |
+
{
|
47 |
+
"role": "system",
|
48 |
+
"content": "You are an expert in functional programming in R5RS, with great knowledge on programming paradigms. You wish to teach the user everything you know about programming paradigms in R5RS - so you explain everything thoroughly. Surround Latex equations in dollar signs as such Inline equation: $equation$ & Display equation: $$equation$$.",
|
49 |
+
},
|
50 |
+
{"role": "user", "content": user_question},
|
51 |
+
{"role": "assistant", "content": str(documents)},
|
52 |
+
{"role": "user", "content": f"Conversation History: {history}"},
|
53 |
+
],
|
54 |
+
temperature=temperature,
|
55 |
+
stream=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
st.header("The Super Duper Schemer Says ...")
|
59 |
+
text_placeholder = st.empty()
|
60 |
+
|
61 |
+
content = ""
|
62 |
+
for i, chunk in enumerate(response):
|
63 |
+
if chunk.choices[0].delta.content is not None:
|
64 |
+
# Append the chunk content to the string
|
65 |
+
content += chunk.choices[0].delta.content
|
66 |
+
|
67 |
+
text_placeholder.markdown(content)
|
68 |
+
|
69 |
+
history.append({user_question: content} if remember_chat_history else {})
|
70 |
+
else:
|
71 |
+
st.write("Please provide an input and (valid) API key")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
database.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chromadb
|
2 |
+
from chromadb.utils import embedding_functions
|
3 |
+
|
4 |
+
def get_client():
|
5 |
+
# CONSTANTS
|
6 |
+
client = chromadb.PersistentClient(path="./chromadb_linux/")
|
7 |
+
MODEL_NAME: str = "mixedbread-ai/mxbai-embed-large-v1" # ~ 0.5 gb
|
8 |
+
COLLECTION_NAME: str = "scheme"
|
9 |
+
EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(
|
10 |
+
model_name=MODEL_NAME
|
11 |
+
)
|
12 |
+
schemer = client.get_collection(
|
13 |
+
name=COLLECTION_NAME,
|
14 |
+
embedding_function=EMBEDDING_FUNC,
|
15 |
+
)
|
16 |
+
return schemer
|
params.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
|
4 |
+
def params():
|
5 |
+
submit_button = st.button("Start Scheming")
|
6 |
+
|
7 |
+
# API Key
|
8 |
+
access_key: str = st.text_input("Enter your gpt key here", type="password")
|
9 |
+
st.markdown(
|
10 |
+
"*For more information about how to get an access key, read [this article](https://platform.openai.com/api-keys). Make sure it has money in it ☠️*",
|
11 |
+
unsafe_allow_html=True,
|
12 |
+
)
|
13 |
+
|
14 |
+
# Chat History
|
15 |
+
remember_chat_history = st.toggle("Remember This Chat's History")
|
16 |
+
|
17 |
+
# Temperature
|
18 |
+
temperature = st.slider(
|
19 |
+
label="Creativity of Model", min_value=0.0, max_value=2.0, value=0.8
|
20 |
+
)
|
21 |
+
st.markdown("*High creativity will make it go crazy - keep it low*")
|
22 |
+
|
23 |
+
# Number of Samples
|
24 |
+
num_samples = st.slider(
|
25 |
+
label="Amount of References to Give to Model",
|
26 |
+
min_value=1,
|
27 |
+
max_value=20,
|
28 |
+
value=10,
|
29 |
+
)
|
30 |
+
st.markdown(
|
31 |
+
"*High amount will make it slow and expensive (and may not be relevant) - keep it low*"
|
32 |
+
)
|
33 |
+
|
34 |
+
# GPT Type
|
35 |
+
gpt_type: str = st.selectbox(
|
36 |
+
label="Choose GPT Type",
|
37 |
+
options=[
|
38 |
+
"gpt-3.5-turbo",
|
39 |
+
"gpt-3.5-turbo-1106",
|
40 |
+
"gpt-3.5-turbo-0125",
|
41 |
+
"gpt-4-32k-0613",
|
42 |
+
"gpt-4-0125-preview",
|
43 |
+
"gpt-4-turbo",
|
44 |
+
],
|
45 |
+
index=0,
|
46 |
+
)
|
47 |
+
st.markdown(
|
48 |
+
"*For more information about GPT types, read [this article](https://platform.openai.com/docs/models).*",
|
49 |
+
unsafe_allow_html=True,
|
50 |
+
)
|
51 |
+
|
52 |
+
st.subheader("What is Groovy-GPT?")
|
53 |
+
st.write(
|
54 |
+
"Groovy-GPT is a RAG (Retrieval-Augmented Generation) model that uses ChromaDB to retrieve relevant documents and then uses OpenAI's models to generate a response."
|
55 |
+
)
|
56 |
+
st.write(
|
57 |
+
"The model is trained on the MIT Scheme textbook and a handful of Discrete Math and Paradigms related content that Professor Troeger posted"
|
58 |
+
)
|
59 |
+
|
60 |
+
return (
|
61 |
+
submit_button,
|
62 |
+
remember_chat_history,
|
63 |
+
temperature,
|
64 |
+
num_samples,
|
65 |
+
access_key,
|
66 |
+
gpt_type,
|
67 |
+
)
|