File size: 5,362 Bytes
cfbe98d
 
 
 
 
9500bfe
cfbe98d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9500bfe
cfbe98d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import pandas as pd
# import matplotlib.pyplot as plt
import gradio as gr
import numpy as np
import infer

# def predict_genus_dna(dnaSeqs):
#     genuses = []

#     # probs = dnamodel.predict_proba(dnaSeqs)
#     # preds = dnamodel.predict(dnaSeqs)
#     # topProb = np.argsort(probs, axis=1)[:,-3:]
#     # topClass = dnamodel.classes_[topProb]

#     # pred_df = pd.DataFrame(data=[topClass, topProb], columns= ['Genus', 'Probability'])

#     return genuses

# def predict_genus_dna_env(dnaSeqsEnv):
#     genuses = {}
#     probs = model.predict_proba(dnaSeqsEnv)
#     preds = model.predict(dnaSeqsEnv)
    
#     for i in range(len(dnaSeqsEnv)):
#         topProb = np.argsort(probs[i], axis=1)[:,-3:]
#         topClass = model.classes_[topProb]

#         sampleStr = dnaSeqsEnv['nucraw'][i]
#         genuses[sampleStr] = (topClass, topProb)

    # pred_df = pd.DataFrame(data=[top5class, top5prob], columns= ['Genus', 'Probability'])

    # return genuses

# def get_genus_image(genus):
#     # return a URL to genus image
#     return f"https://example.com/images/{genus}.jpg"

def get_genuses(dna_file, dnaenv_file):
    dna_df = pd.read_csv(dna_file.name)
    dnaenv_df = pd.read_csv(dnaenv_file.name)
    
    results = []
    
    # envdna_genuses = predict_genus_dna_env(dnaenv_df)
    # dna_genuses = predict_genus_dna(dna_df)
    # images = [get_genus_image(genus) for genus in top_5_genuses]

    genuses = infer.infer()
        
    results.append({
        "sequence": dna_df['nucraw'],
        # "predictions": pd.concat([dna_genuses, envdna_genuses], axis=0)
        'predictions': genuses
})
    
    return results

def display_results(results):
    display = []
    for result in results:
        # for i in range(len(result["predictions"])):
        #     display.append({
        #         "DNA Sequence": result["sequence"],
        #         "DNA Pred Genus": result['predictions'][i][0],
        #         "DNA Only Prob": result['predictions'][i][1],
        #         "DNA Env Pred Genus": result['predictions'][i][2],
        #         "DNA Env Prob": result['predictions'][i][3],
        #         # "Image": result["images"][i]
        #     })
        display.append({
            "DNA Sequence": result["sequence"],
            "DNA Pred Genus": result['predictions'][0]
        })
    return pd.DataFrame(display)

def gradio_interface(file):
    results = get_genuses(file)
    return display_results(results)

# Gradio interface
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# DNA Identifier Tool")
        file_input = gr.File(label="Upload DNA CSV file", file_types=['csv'])
        output_table = gr.Dataframe(headers=["DNA", "Coord", "DNA Only Pred Genus", "DNA Only Prob", "DNA & Env Pred Genus", "DNA & Env Prob"])
        
        def update_output(file):
            result_df = gradio_interface(file)
            return result_df
        
        file_input.change(update_output, inputs=file_input, outputs=output_table)
        
demo.launch()


# with gr.Blocks() as demo:
#     with gr.Row():
#         word = gr.Textbox(label="word")
#         leng = gr.Number(label="leng")
#         output = gr.Textbox(label="Output")
#     with gr.Row():
#         run = gr.Button()

#     event = run.click(predict_genus, 
#                       [word, leng], 
#                       output, 
#                       batch=True, 
#                       max_batch_size=20)

# demo.launch()

# DB_USER = os.getenv("DB_USER")
# DB_PASSWORD = os.getenv("DB_PASSWORD")
# DB_HOST = os.getenv("DB_HOST")
# PORT = 8080
# DB_NAME = "bikeshare"

# connection_string = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}?port={PORT}&dbname={DB_NAME}"

# def get_count_ride_type():
#     df = pd.read_sql(
#     """
#         SELECT COUNT(ride_id) as n, rideable_type
#         FROM rides
#         GROUP BY rideable_type
#         ORDER BY n DESC
#     """,
#     con=connection_string
#     )
#     fig_m, ax = plt.subplots()
#     ax.bar(x=df['rideable_type'], height=df['n'])
#     ax.set_title("Number of rides by bycycle type")
#     ax.set_ylabel("Number of Rides")
#     ax.set_xlabel("Bicycle Type")
#     return fig_m


# def get_most_popular_stations():

#     df = pd.read_sql(
#         """
#     SELECT COUNT(ride_id) as n, MAX(start_station_name) as station
#     FROM RIDES
#     WHERE start_station_name is NOT NULL
#     GROUP BY start_station_id
#     ORDER BY n DESC
#     LIMIT 5
#     """,
#     con=connection_string
#     )
#     fig_m, ax = plt.subplots()
#     ax.bar(x=df['station'], height=df['n'])
#     ax.set_title("Most popular stations")
#     ax.set_ylabel("Number of Rides")
#     ax.set_xlabel("Station Name")
#     ax.set_xticklabels(
#         df['station'], rotation=45, ha="right", rotation_mode="anchor"
#     )
#     ax.tick_params(axis="x", labelsize=8)
#     fig_m.tight_layout()
#     return fig_m


# with gr.Blocks() as demo:
#     with gr.Row():
#         bike_type = gr.Plot()
#         station = gr.Plot()

#     demo.load(get_count_ride_type, inputs=None, outputs=bike_type)
#     demo.load(get_most_popular_stations, inputs=None, outputs=station)

# def greet(name, intensity):
#     return "Hello, " + name + "!" * int(intensity)

# demo = gr.Interface(
#     fn=greet,
#     inputs=["text", "slider"],
#     outputs=["text"],
# )

demo.launch()