File size: 8,236 Bytes
0281a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import requests
import random
import os
import zipfile # built in module for unzipping files (thank god)
import librosa
import time
from infer_rvc_python import BaseLoader
from pydub import AudioSegment

# fucking dogshit toggle
try:
    import spaces
    spaces_status = True
except ImportError:
    spaces_status = False

converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None) # <- yeah so like this handles rvc

global pth_file
global index_file

pth_file = "model.pth"
index_file = "model.index"

#CONFIGS
TEMP_DIR = "temp"
MODEL_PREFIX = "model"
PITCH_ALGO_OPT = [
    "pm",
    "harvest",
    "crepe",
    "rmvpe",
    "rmvpe+",
]


os.makedirs(TEMP_DIR, exist_ok=True)

def unzip_file(file):
    filename = os.path.basename(file).split(".")[0] # converts "model.zip" to "model" so we can do things
    with zipfile.ZipFile(file, 'r') as zip_ref:
        zip_ref.extractall(os.path.join(TEMP_DIR, filename)) # might not be very ram efficient...
    return True
    

def progress_bar(total, current): # best progress bar ever trust me sunglasses emoji 😎 
    return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"

def download_from_url(url, filename=None):
    if "huggingface" not in url:
        return ["The URL must be from huggingface", "Failed", "Failed"]
    if filename is None:
        filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
    response = requests.get(url)
    total = int(response.headers.get('content-length', 0)) # bytes to download (length of the file)
    if total > 500000000:

        return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
    current = 0
    with open(filename, "wb") as f:
        for data in response.iter_content(chunk_size=4096): # download in chunks of 4096 bytes (4kb - helps with memory usage and speed)
            f.write(data)
            current += len(data)
            print(progress_bar(total, current), end="\r") # \r is a carriage return, it moves the cursor to the start of the line so its like tqdm sunglasses emoji 😎
    
    # unzip because the model is in a zip file lel

    try:
        unzip_file(filename)
    except Exception as e:
        return ["Failed to unzip the file", "Failed", "Failed"] # return early if it fails and like tell the user but its dogshit hahahahahahaha 😎 According to all known laws aviation, there is no way a bee should be able to fly.
    unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0]) # just do what we did in unzip_file because we need the directory
    pth_files = []
    index_files = []
    for root, dirs, files in os.walk(unzipped_dir): # could be done more efficiently because nobody stores models in subdirectories but like who cares (it's a futureproofing thing lel)
        for file in files:
            if file.endswith(".pth"):
                pth_files.append(os.path.join(root, file))
            elif file.endswith(".index"):
                index_files.append(os.path.join(root, file))
    
    print(pth_files, index_files) # debug print because im fucking stupid and i need to see what is going on
    global pth_file
    global index_file
    pth_file = pth_files[0]
    index_file = index_files[0]
    return ["Downloaded as " + filename, pth_files[0], index_files[0]]

if spaces_status:
    @spaces.GPU()
    def convert_now(audio_files, random_tag, converter):
        return converter(
            audio_files,
            random_tag,
            overwrite=False,
            parallel_workers=8
        )
else:
    def convert_now(audio_files, random_tag, converter):
        return converter(
            audio_files,
            random_tag,
            overwrite=False,
            parallel_workers=8
        )
    
def run(

    audio_files,

    file_m,

    pitch_alg,

    pitch_lvl,

    file_index,

    index_inf,

    r_m_f,

    e_r,

    c_b_p,

):
    if not audio_files:
        raise ValueError("The audio pls")

    if isinstance(audio_files, str):
        audio_files = [audio_files]

    try:
        duration_base = librosa.get_duration(filename=audio_files[0])
        print("Duration:", duration_base)
    except Exception as e:
        print(e)

    random_tag = "USER_"+str(random.randint(10000000, 99999999))

    converter.apply_conf(
        tag=random_tag,
        file_model=file_m,
        pitch_algo=pitch_alg,
        pitch_lvl=pitch_lvl,
        file_index=file_index,
        index_influence=index_inf,
        respiration_median_filtering=r_m_f,
        envelope_ratio=e_r,
        consonant_breath_protection=c_b_p,
        resample_sr=44100 if audio_files[0].endswith('.mp3') else 0, 
    )
    time.sleep(0.1)

    result = convert_now(audio_files, random_tag, converter)

    return result[0]

with gr.Blocks() as demo:
    gr.Markdown("## Ilaria RVC πŸ’–")
    with gr.Tab("Inference"):
        sound_gui = gr.Audio(value=None,type="filepath",autoplay=False,visible=True,)
        pth_file_ui = gr.Textbox(label="Model pth file",value=pth_file,visible=False,interactive=False,) # gradio is fucking weird (im with stupid v)
        index_file_ui = gr.Textbox(label="Index pth file",value=index_file,visible=False,interactive=False,) # gradio is fucking weird (im with stupid ^)
        pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT,value=PITCH_ALGO_OPT[4],label="Pitch algorithm",visible=True,interactive=True,)
        pitch_lvl_conf = gr.Slider(label="Pitch level",minimum=-24,maximum=24,step=1,value=0,visible=True,interactive=True,)
        index_inf_conf =  gr.Slider(minimum=0,maximum=1,label="Index influence",value=0.75,)
        respiration_filter_conf = gr.Slider(minimum=0,maximum=7,label="Respiration median filtering",value=3,step=1,interactive=True,)
        envelope_ratio_conf = gr.Slider(minimum=0,maximum=1,label="Envelope ratio",value=0.25,interactive=True,)
        consonant_protec_conf = gr.Slider(minimum=0,maximum=0.5,label="Consonant breath protection",value=0.5,interactive=True,)
        button_conf = gr.Button("Convert",variant="primary",)
        output_conf = gr.Audio(type="filepath",label="Output",)

        button_conf.click(
            run,
            inputs=[
                sound_gui,
                pth_file_ui,
                pitch_algo_conf,
                pitch_lvl_conf,
                index_file_ui, # put a bullet through my head
                index_inf_conf,
                respiration_filter_conf,
                envelope_ratio_conf,
                consonant_protec_conf,
            ],
            outputs=[output_conf],
        )
    
    with gr.Tab("Download Model"):
        # markdown
        gr.Markdown(
            "Download the model from the following URL and upload it here. (Hugginface RVC model)"
        )
        model = gr.Textbox(lines=1, label="Model URL")
        download_button = gr.Button("Download Model")
        status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False)
        model_pth = gr.Textbox(lines=1, label="Model pth file", placeholder="Waiting....", interactive=False)
        index_pth = gr.Textbox(lines=1, label="Index pth file", placeholder="Waiting....", interactive=False)
        download_button.click(download_from_url, model, outputs=[status, model_pth, index_pth])
        set_model_button = gr.Button("Set Model")
        #set_model_button.click(

    with gr.Tab("Credits"):
        gr.Markdown(
            """

            Ilaria RVC made by [Ilaria](https://huggingface.co/TheStinger) suport her on [ko-fi](https://ko-fi.com/ilariaowo)

            

            The Inference code is made by [r3gm](https://huggingface.co/r3gm) (his module helped form this space πŸ’–)



            made with ❀️ by [mikus](https://github.com/cappuch) - i hacked it up lel

            """
        )

demo.queue(api_open=False).launch(show_api=False) # idk ilaria if you want or dont want to