Linly-ChatFlow / app.py
wmpscc's picture
Update app.py
855a849 verified
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
def init_model():
model = AutoModelForCausalLM.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", device_map="cuda:0",
torch_dtype=torch.bfloat16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", use_fast=False, trust_remote_code=True)
return model, tokenizer
def process(message, history):
input_prompt = ""
for interaction in history:
input_prompt = f"{input_prompt} User: {str(interaction[0]).strip(' ')} Bot: {str(interaction[1]).strip(' ')}"
input_prompt = f"{input_prompt} ### Instruction:{message.strip()} ### Response:"
inputs = tokenizer(input_prompt, return_tensors="pt").to("cuda:0")
try:
generate_ids = model.generate(inputs.input_ids, max_new_tokens=2048, do_sample=True, top_k=20, top_p=0.84,
temperature=1, repetition_penalty=1.15, eos_token_id=2, bos_token_id=1,
pad_token_id=0)
response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print('log:', response)
response = response.split("### Response:")[-1]
return response
except:
return "Error: 会话超长,请重试!"
if __name__ == '__main__':
examples = ["Python和JavaScript编程语言的主要区别是什么?", "影响消费者行为的主要因素是什么?", "请用pytorch实现一个带ReLU激活函数的全连接层的代码",
"请用C++编程语言实现“给你两个字符串haystack和needle,在haystack字符串中找出needle字符串的第一个匹配项的下标(下标从 0 开始)。如果needle不是haystack的一部分,则返回-1。",
"如何使用ssh -L,请用具体例子说明",
"应对压力最有效的方法是什么?"]
model, tokenizer = init_model()
demo = gr.ChatInterface(
process,
chatbot=gr.Chatbot(height=600),
textbox=gr.Textbox(placeholder="Input", container=False, scale=7),
title="Linly ChatFlow",
description="",
theme="soft",
examples=examples,
cache_examples=True,
retry_btn="Retry",
undo_btn="Delete Previous",
clear_btn="Clear",
)
demo.queue(concurrency_count=75).launch()