Spaces:
Runtime error
Runtime error
# copy from | |
# https://github.com/tloen/llama-int8/blob/ce74669c767e42b5082391dd0cfcb621ba40c7f9/llama/tokenizer.py | |
from sentencepiece import SentencePieceProcessor | |
from logging import getLogger | |
from typing import List | |
import os | |
logger = getLogger() | |
class Tokenizer: | |
def __init__(self, model_path: str): | |
# reload tokenizer | |
assert os.path.isfile(model_path), model_path | |
self.sp_model = SentencePieceProcessor(model_file=model_path) | |
logger.info(f"Reloaded SentencePiece model from {model_path}") | |
# BOS / EOS token IDs | |
self.n_words: int = self.sp_model.vocab_size() | |
self.bos_id: int = self.sp_model.bos_id() | |
self.eos_id: int = self.sp_model.eos_id() | |
self.pad_id: int = self.sp_model.pad_id() | |
logger.info( | |
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" | |
) | |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | |
def encode(self, s: str, bos: bool, eos: bool) -> List[int]: | |
assert type(s) is str | |
t = self.sp_model.encode(s) | |
if bos: | |
t = [self.bos_id] + t | |
if eos: | |
t = t + [self.eos_id] | |
return t | |
def decode(self, t: List[int]) -> str: | |
return self.sp_model.decode(t) |