Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import argparse | |
from utils import load_hyperparam, load_model | |
from models.tokenize import Tokenizer | |
from models.llama import * | |
from generate import LmGeneration | |
import os | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
args = None | |
lm_generation = None | |
def init_args(): | |
global args | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
args = parser.parse_args() | |
args.load_model_path = './model_file/chatllama_7b.bin' | |
args.config_path = './config/llama_7b.json' | |
args.spm_model_path = './model_file/tokenizer.model' | |
args.batch_size = 1 | |
args.seq_length = 1024 | |
args.world_size = 1 | |
args.use_int8 = False | |
args.top_p = 0 | |
args.repetition_penalty_range = 1024 | |
args.repetition_penalty_slope = 0 | |
args.repetition_penalty = 1.15 | |
args = load_hyperparam(args) | |
args.tokenizer = Tokenizer(model_path=args.spm_model_path) | |
args.vocab_size = args.tokenizer.sp_model.vocab_size() | |
def init_model(): | |
global lm_generation | |
torch.set_default_tensor_type(torch.HalfTensor) | |
model = LLaMa(args) | |
torch.set_default_tensor_type(torch.FloatTensor) | |
model = load_model(model, args.load_model_path) | |
model.eval() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
print(torch.cuda.max_memory_allocated() / 1024 ** 3) | |
lm_generation = LmGeneration(model, args.tokenizer) | |
def chat(prompt, top_k, temperature): | |
args.top_k = int(top_k) | |
args.temperature = temperature | |
response = lm_generation.generate(args, [prompt]) | |
return response[0] | |
if __name__ == '__main__': | |
init_args() | |
init_model() | |
demo = gr.Interface( | |
fn=chat, | |
inputs=["text", gr.Slider(1, 60, value=10, step=1), gr.Slider(0.1, 2.0, value=1.0, step=0.1)], | |
outputs="text", | |
) | |
demo.launch() | |