|
import streamlit as st
|
|
from spacy import displacy
|
|
from Model.NER.VLSP2021.Predict_Ner import ViTagger
|
|
import re
|
|
from thunghiemxuly import save_uploaded_image,convert_text_to_txt,add_string_to_txt
|
|
|
|
import os
|
|
from transformers import AutoTokenizer, BertConfig
|
|
from Model.MultimodelNER.VLSP2016.train_umt_2016 import format_predictions,process_predictions,combine_entities,remove_B_prefix,load_model,predict
|
|
from Model.MultimodelNER.predict import get_test_examples_predict
|
|
from Model.MultimodelNER import resnet as resnet
|
|
from Model.MultimodelNER.resnet_utils import myResnet
|
|
import torch
|
|
import numpy as np
|
|
from Model.MultimodelNER.VLSP2016.dataset_roberta import MNERProcessor_2016
|
|
from Model.MultimodelNER.VLSP2016.MNER_2016 import show_mner_2016
|
|
from Model.MultimodelNER.VLSP2021.MNER_2021 import show_mner_2021
|
|
|
|
CONFIG_NAME = 'bert_config.json'
|
|
WEIGHTS_NAME = 'pytorch_model.bin'
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
net = getattr(resnet, 'resnet152')()
|
|
net.load_state_dict(torch.load(os.path.join('E:/demo_datn/pythonProject1/Model/Resnet/', 'resnet152.pth')))
|
|
encoder = myResnet(net, True, device)
|
|
def process_text(text):
|
|
|
|
processed_text = re.sub(r'\s+', ' ', text.strip())
|
|
return processed_text
|
|
|
|
|
|
|
|
def show_mner():
|
|
st.sidebar.title('Datasets')
|
|
dataset = st.sidebar.selectbox("Datasets", ("VLSP2016", "VLSP2021"))
|
|
st.header("Multimodal NER")
|
|
if dataset == 'VLSP2016':
|
|
show_mner_2016()
|
|
else:
|
|
show_mner_2021()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|