Linhz's picture
Update Model/MultimodelNER/VLSP2021/MNER_2021.py
ce95a0d verified
raw
history blame
7.92 kB
import streamlit as st
from spacy import displacy
from Model.NER.VLSP2021.Predict_Ner import ViTagger
import re
from thunghiemxuly import save_uploaded_image,convert_text_to_txt,add_string_to_txt
import os
from transformers import AutoTokenizer, BertConfig
from Model.MultimodelNER.VLSP2021.train_umt_2021 import load_model,predict
from Model.MultimodelNER.Ner_processing import format_predictions,process_predictions,combine_entities,remove_B_prefix,combine_i_tags
from Model.MultimodelNER.predict import get_test_examples_predict
from Model.MultimodelNER import resnet as resnet
from Model.MultimodelNER.resnet_utils import myResnet
import torch
import numpy as np
from Model.MultimodelNER.VLSP2021.dataset_roberta import MNERProcessor_2021
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = getattr(resnet, 'resnet152')()
net.load_state_dict(torch.load(os.path.join('Model/Resnet/', 'resnet152.pth')))
encoder = myResnet(net, True, device)
def process_text(text):
# Loại bỏ dấu cách thừa và dấu cách ở đầu và cuối văn bản
processed_text = re.sub(r'\s+', ' ', text.strip())
return processed_text
def show_mner_2021():
multimodal_text = st.text_area("Enter your text for MNER:", height=300)
multimodal_text = process_text(multimodal_text) # Xử lý văn bản
image = st.file_uploader("Upload an image (only jpg):", type=["jpg"])
if st.button("Process Multimodal NER"):
save_image = 'Model/MultimodelNER/VLSP2021/Image'
save_txt = 'Model/MultimodelNER/VLSP2021/Filetxt/test.txt'
image_name = image.name
save_uploaded_image(image, save_image)
convert_text_to_txt(multimodal_text, save_txt)
add_string_to_txt(image_name, save_txt)
st.image(image, caption="Uploaded Image", use_column_width=True)
bert_model = 'vinai/phobert-base-v2'
output_dir = 'Model/MultimodelNER/VLSP2021/best_model'
output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
output_encoder_file = os.path.join(output_dir, "pytorch_encoder.bin")
processor = MNERProcessor_2021()
label_list = processor.get_labels()
auxlabel_list = processor.get_auxlabels()
num_labels = len(label_list) + 1
auxnum_labels = len(auxlabel_list) + 1
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
trans_matrix[0, 0] = 1 # pad to pad
trans_matrix[1, 1] = 1 # O to O
trans_matrix[2, 2] = 0.25 # B to B-MISC
trans_matrix[2, 4] = 0.25 # B to B-PER
trans_matrix[2, 6] = 0.25 # B to B-ORG
trans_matrix[2, 8] = 0.25 # B to B-LOC
trans_matrix[3, 3] = 0.25 # I to I-MISC
trans_matrix[3, 5] = 0.25 # I to I-PER
trans_matrix[3, 7] = 0.25 # I to I-ORG
trans_matrix[3, 9] = 0.25 # I to I-LOC
trans_matrix[4, 10] = 1 # X to X
trans_matrix[5, 11] = 1 # [CLS] to [CLS]
trans_matrix[6, 12] = 1
tokenizer = AutoTokenizer.from_pretrained(bert_model, do_lower_case=False)
model_umt, encoder_umt = load_model(output_model_file, output_encoder_file, encoder, num_labels,
auxnum_labels)
eval_examples = get_test_examples_predict(
'Model/MultimodelNER/VLSP2021/Filetxt/')
y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device, save_image, trans_matrix)
formatted_output = format_predictions(a, y_pred[0])
final = process_predictions(formatted_output)
final2 = combine_entities(final)
final3 = remove_B_prefix(final2)
final4 = combine_i_tags(final3)
words_and_labels = final4
# Tạo danh sách từ
words = [word for word, _ in words_and_labels]
# Tạo danh sách thực thể và nhãn cho mỗi từ, loại bỏ nhãn 'O'
entities = [{'start': sum(len(word) + 1 for word, _ in words_and_labels[:i]),
'end': sum(len(word) + 1 for word, _ in words_and_labels[:i + 1]), 'label': label} for
i, (word, label)
in enumerate(words_and_labels) if label != 'O']
# print(entities)
# Render the visualization without color for 'O' labels
html = displacy.render(
{"text": " ".join(words), "ents": entities, "title": None},
style="ent",
manual=True,
options={"colors": {"DATETIME-DATERANGE": "#66c2ff",
"LOCATION-GPE": "#ffcc99",
"O": None, # Màu cho nhãn 'O'
"QUANTITY-NUM": "#ffdf80",
"EVENT-CUL": "#bfbfbf",
"DATETIME": "#80ff80",
"PERSONTYPE": "#ff80ff",
"PERSON": "#bf80ff",
"QUANTITY-PER": "#80cccc",
"ORGANIZATION": "#ff6666",
"LOCATION-GEO": "#66cc66",
"LOCATION-STRUC": "#cccc66",
"PRODUCT-COM": "#ffff66",
"DATETIME-DATE": "#66cccc",
"QUANTITY-DIM": "#6666ff",
"PRODUCT": "#cc6666",
"QUANTITY": "#6666cc",
"DATETIME-DURATION": "#9966ff",
"QUANTITY-CUR": "#ff9966",
"DATETIME-TIME": "#cdbf93",
"QUANTITY-TEM": "#cc9966",
"DATETIME-TIMERANGE": "#cc8566",
"EVENT-GAMESHOW": "#8c8c5a",
"QUANTITY-AGE": "#70db70",
"QUANTITY-ORD": "#e699ff",
"PRODUCT-LEGAL": "#806699",
"LOCATION": "#993366",
"ORGANIZATION-MED": "#339933",
"URL": "#ff4d4d",
"PHONENUMBER": "#99cc99",
"ORGANIZATION-SPORTS": "#6666ff",
"EVENT-SPORT": "#ffff80",
"SKILL": "#b38f66",
"EVENT-NATURAL": "#ff9966",
"ADDRESS": "#cc9966",
"IP": "#b38f66",
"EMAIL": "#cc8566",
"ORGANIZATION-STOCK": "#666633",
"DATETIME-SET": "#70db70",
"PRODUCT-AWARD": "#e699ff",
"MISCELLANEOUS": "#806699",
"LOCATION-GPE-GEO": "#99ffff"}}
)
# print(html)
st.markdown(html, unsafe_allow_html=True)
# Sử dụng widget st.html để hiển thị HTML
# Hiển thị văn bản đã nhập
# st.write("Văn bản đã nhập:", text)
###Ví dụ 1 : Một trận hỗn chiến đã xảy ra tại trận đấu khúc côn cầu giữa Penguins và Islanders ở Mỹ (image:penguin)