|
import os |
|
import sys |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
import argparse |
|
|
|
import logging |
|
import random |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer, BertConfig |
|
from Model.MultimodelNER.UMT import UMT |
|
from Model.MultimodelNER import resnet as resnet |
|
from Model.MultimodelNER.resnet_utils import myResnet |
|
from Model.MultimodelNER.VLSP2016.dataset_roberta import convert_mm_examples_to_features, MNERProcessor_2016 |
|
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, |
|
TensorDataset) |
|
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear |
|
from Model.MultimodelNER.ner_evaluate import evaluate_each_class,evaluate |
|
from seqeval.metrics import classification_report |
|
from tqdm import tqdm, trange |
|
import json |
|
from Model.MultimodelNER.predict import convert_mm_examples_to_features_predict, get_test_examples_predict |
|
from Model.MultimodelNER.Ner_processing import * |
|
CONFIG_NAME = 'bert_config.json' |
|
WEIGHTS_NAME = 'pytorch_model.bin' |
|
|
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt='%m/%d/%Y %H:%M:%S', |
|
level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--negative_rate", |
|
default=16, |
|
type=int, |
|
help="the negative samples rate") |
|
|
|
parser.add_argument('--lamb', |
|
default=0.62, |
|
type=float) |
|
|
|
parser.add_argument('--temp', |
|
type=float, |
|
default=0.179, |
|
help="parameter for CL training") |
|
|
|
parser.add_argument('--temp_lamb', |
|
type=float, |
|
default=0.7, |
|
help="parameter for CL training") |
|
|
|
parser.add_argument("--data_dir", |
|
default='./data/twitter2017', |
|
type=str, |
|
|
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.") |
|
parser.add_argument("--bert_model", default='vinai/phobert-base-v2', type=str) |
|
parser.add_argument("--task_name", |
|
default='sonba', |
|
type=str, |
|
|
|
help="The name of the task to train.") |
|
parser.add_argument("--output_dir", |
|
default='Model/MultimodelNER/VLSP2016/best_model/', |
|
type=str, |
|
help="The output directory where the model predictions and checkpoints will be written.") |
|
|
|
|
|
parser.add_argument("--cache_dir", |
|
default="", |
|
type=str, |
|
help="Where do you want to store the pre-trained models downloaded from s3") |
|
|
|
parser.add_argument("--max_seq_length", |
|
default=128, |
|
type=int, |
|
help="The maximum total input sequence length after WordPiece tokenization. \n" |
|
"Sequences longer than this will be truncated, and sequences shorter \n" |
|
"than this will be padded.") |
|
|
|
parser.add_argument("--do_train", |
|
action='store_true', |
|
help="Whether to run training.") |
|
|
|
parser.add_argument("--do_eval", |
|
action='store_true', |
|
help="Whether to run eval on the dev set.") |
|
|
|
parser.add_argument("--do_lower_case", |
|
action='store_true', |
|
help="Set this flag if you are using an uncased model.") |
|
|
|
parser.add_argument("--train_batch_size", |
|
default=64, |
|
type=int, |
|
help="Total batch size for training.") |
|
|
|
parser.add_argument("--eval_batch_size", |
|
default=16, |
|
type=int, |
|
help="Total batch size for eval.") |
|
|
|
parser.add_argument("--learning_rate", |
|
default=5e-5, |
|
type=float, |
|
help="The initial learning rate for Adam.") |
|
|
|
parser.add_argument("--num_train_epochs", |
|
default=12.0, |
|
type=float, |
|
help="Total number of training epochs to perform.") |
|
|
|
parser.add_argument("--warmup_proportion", |
|
default=0.1, |
|
type=float, |
|
help="Proportion of training to perform linear learning rate warmup for. " |
|
"E.g., 0.1 = 10%% of training.") |
|
|
|
parser.add_argument("--no_cuda", |
|
action='store_true', |
|
help="Whether not to use CUDA when available") |
|
|
|
parser.add_argument("--local_rank", |
|
type=int, |
|
default=-1, |
|
help="local_rank for distributed training on gpus") |
|
|
|
parser.add_argument('--seed', |
|
type=int, |
|
default=37, |
|
help="random seed for initialization") |
|
|
|
parser.add_argument('--gradient_accumulation_steps', |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.") |
|
|
|
parser.add_argument('--fp16', |
|
action='store_true', |
|
help="Whether to use 16-bit float precision instead of 32-bit") |
|
|
|
parser.add_argument('--loss_scale', |
|
type=float, default=0, |
|
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" |
|
"0 (default value): dynamic loss scaling.\n" |
|
"Positive power of 2: static loss scaling value.\n") |
|
|
|
parser.add_argument('--mm_model', default='MTCCMBert', help='model name') |
|
parser.add_argument('--layer_num1', type=int, default=1, help='number of txt2img layer') |
|
parser.add_argument('--layer_num2', type=int, default=1, help='number of img2txt layer') |
|
parser.add_argument('--layer_num3', type=int, default=1, help='number of txt2txt layer') |
|
parser.add_argument('--fine_tune_cnn', action='store_true', help='fine tune pre-trained CNN if True') |
|
parser.add_argument('--resnet_root', default='Model/Resnet/', help='path the pre-trained cnn models') |
|
parser.add_argument('--crop_size', type=int, default=224, help='crop size of image') |
|
parser.add_argument('--path_image', default='Model/MultimodelNER/VLSP2016/Image', help='path to images') |
|
|
|
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") |
|
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
processors = { |
|
"twitter2015": MNERProcessor_2016, |
|
"twitter2017": MNERProcessor_2016, |
|
"sonba": MNERProcessor_2016 |
|
} |
|
|
|
|
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
|
|
|
|
task_name = args.task_name.lower() |
|
|
|
|
|
|
|
processor = processors[task_name]() |
|
label_list = processor.get_labels() |
|
auxlabel_list = processor.get_auxlabels() |
|
num_labels = len(label_list) + 1 |
|
auxnum_labels = len(auxlabel_list) + 1 |
|
|
|
start_label_id = processor.get_start_label_id() |
|
stop_label_id = processor.get_stop_label_id() |
|
|
|
|
|
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float) |
|
trans_matrix[0, 0] = 1 |
|
trans_matrix[1, 1] = 1 |
|
trans_matrix[2, 2] = 0.25 |
|
trans_matrix[2, 4] = 0.25 |
|
trans_matrix[2, 6] = 0.25 |
|
trans_matrix[2, 8] = 0.25 |
|
trans_matrix[3, 3] = 0.25 |
|
trans_matrix[3, 5] = 0.25 |
|
trans_matrix[3, 7] = 0.25 |
|
trans_matrix[3, 9] = 0.25 |
|
trans_matrix[4, 10] = 1 |
|
trans_matrix[5, 11] = 1 |
|
trans_matrix[6, 12] = 1 |
|
''' |
|
trans_matrix = np.zeros((num_labels, auxnum_labels), dtype=float) |
|
trans_matrix[0,0]=1 # pad to pad |
|
trans_matrix[1,1]=1 |
|
trans_matrix[2,2]=1 |
|
trans_matrix[4,2]=1 |
|
trans_matrix[6,2]=1 |
|
trans_matrix[8,2]=1 |
|
trans_matrix[3,3]=1 |
|
trans_matrix[5,3]=1 |
|
trans_matrix[7,3]=1 |
|
trans_matrix[9,3]=1 |
|
trans_matrix[10,4]=1 |
|
trans_matrix[11,5]=1 |
|
trans_matrix[12,6]=1 |
|
''' |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) |
|
|
|
|
|
|
|
net = getattr(resnet, 'resnet152')() |
|
net.load_state_dict(torch.load(os.path.join(args.resnet_root, 'resnet152.pth'))) |
|
encoder = myResnet(net, args.fine_tune_cnn, device) |
|
|
|
|
|
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) |
|
|
|
output_encoder_file = os.path.join(args.output_dir, "pytorch_encoder.bin") |
|
|
|
temp = args.temp |
|
temp_lamb = args.temp_lamb |
|
lamb = args.lamb |
|
negative_rate = args.negative_rate |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels): |
|
model = UMT.from_pretrained(args.bert_model, |
|
cache_dir=args.cache_dir, layer_num1=args.layer_num1, |
|
layer_num2=args.layer_num2, |
|
layer_num3=args.layer_num3, |
|
num_labels_=num_labels, auxnum_labels=auxnum_labels) |
|
model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu'))) |
|
model.to(device) |
|
encoder_state_dict = torch.load(output_encoder_file, map_location=torch.device('cpu')) |
|
encoder.load_state_dict(encoder_state_dict) |
|
encoder.to(device) |
|
return model, encoder |
|
|
|
model_umt,encoder_umt=load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels) |
|
|
|
|
|
|
|
|
|
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2016\Image' |
|
trans_matrix = np.zeros((auxnum_labels,num_labels), dtype=float) |
|
trans_matrix[0,0]=1 |
|
trans_matrix[1,1]=1 |
|
trans_matrix[2,2]=0.25 |
|
trans_matrix[2,4]=0.25 |
|
trans_matrix[2,6]=0.25 |
|
trans_matrix[2,8]=0.25 |
|
trans_matrix[3,3]=0.25 |
|
trans_matrix[3,5]=0.25 |
|
trans_matrix[3,7]=0.25 |
|
trans_matrix[3,9]=0.25 |
|
trans_matrix[4,10]=1 |
|
trans_matrix[5,11]=1 |
|
trans_matrix[6,12]=1 |
|
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2016\Image' |
|
|
|
def predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix): |
|
|
|
features = convert_mm_examples_to_features_predict(eval_examples, 256, tokenizer, 224,path_image) |
|
|
|
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) |
|
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) |
|
added_input_mask = torch.tensor([f.added_input_mask for f in features], dtype=torch.long) |
|
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) |
|
img_feats = torch.stack([f.img_feat for f in features]) |
|
print(img_feats) |
|
eval_data = TensorDataset(input_ids, input_mask, added_input_mask, segment_ids, img_feats) |
|
eval_sampler = SequentialSampler(eval_data) |
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=16) |
|
|
|
model_umt.eval() |
|
encoder_umt.eval() |
|
|
|
y_pred = [] |
|
label_map = {i: label for i, label in enumerate(label_list, 1)} |
|
label_map[0] = "<pad>" |
|
|
|
for input_ids, input_mask, added_input_mask, segment_ids, img_feats in tqdm(eval_dataloader, desc="Evaluating"): |
|
input_ids = input_ids.to(device) |
|
input_mask = input_mask.to(device) |
|
added_input_mask = added_input_mask.to(device) |
|
segment_ids = segment_ids.to(device) |
|
img_feats = img_feats.to(device) |
|
|
|
with torch.no_grad(): |
|
imgs_f, img_mean, img_att = encoder_umt(img_feats) |
|
predicted_label_seq_ids = model_umt(input_ids, segment_ids, input_mask, added_input_mask, img_att, |
|
trans_matrix) |
|
|
|
logits = predicted_label_seq_ids |
|
input_mask = input_mask.to('cpu').numpy() |
|
|
|
for i, mask in enumerate(input_mask): |
|
temp_1 = [] |
|
for j, m in enumerate(mask): |
|
if j == 0: |
|
continue |
|
if m: |
|
if label_map[logits[i][j]] not in ["<pad>", "<s>", "</s>", "X"]: |
|
temp_1.append(label_map[logits[i][j]]) |
|
else: |
|
break |
|
y_pred.append(temp_1) |
|
|
|
a = eval_examples[0].text_a.split(" ") |
|
|
|
return y_pred, a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|