|
import streamlit as st
|
|
from spacy import displacy
|
|
from Model.NER.VLSP2021.Predict_Ner import ViTagger
|
|
import re
|
|
from thunghiemxuly import save_uploaded_image,convert_text_to_txt,add_string_to_txt
|
|
|
|
import os
|
|
from transformers import AutoTokenizer, BertConfig
|
|
from Model.MultimodelNER.VLSP2021.train_umt_2021 import load_model,predict
|
|
from Model.MultimodelNER.Ner_processing import format_predictions,process_predictions,combine_entities,remove_B_prefix,combine_i_tags
|
|
|
|
from Model.MultimodelNER.predict import get_test_examples_predict
|
|
from Model.MultimodelNER import resnet as resnet
|
|
from Model.MultimodelNER.resnet_utils import myResnet
|
|
import torch
|
|
import numpy as np
|
|
from Model.MultimodelNER.VLSP2021.dataset_roberta import MNERProcessor_2021
|
|
|
|
|
|
CONFIG_NAME = 'bert_config.json'
|
|
WEIGHTS_NAME = 'pytorch_model.bin'
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
net = getattr(resnet, 'resnet152')()
|
|
net.load_state_dict(torch.load(os.path.join('E:/demo_datn/pythonProject1/Model/Resnet/', 'resnet152.pth')))
|
|
encoder = myResnet(net, True, device)
|
|
def process_text(text):
|
|
|
|
processed_text = re.sub(r'\s+', ' ', text.strip())
|
|
return processed_text
|
|
|
|
|
|
|
|
def show_mner_2021():
|
|
multimodal_text = st.text_area("Enter your text for MNER:", height=300)
|
|
multimodal_text = process_text(multimodal_text)
|
|
image = st.file_uploader("Upload an image (only jpg):", type=["jpg"])
|
|
if st.button("Process Multimodal NER"):
|
|
save_image = 'E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2021/Image'
|
|
save_txt = 'E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2021/Filetxt/test.txt'
|
|
image_name = image.name
|
|
save_uploaded_image(image, save_image)
|
|
convert_text_to_txt(multimodal_text, save_txt)
|
|
add_string_to_txt(image_name, save_txt)
|
|
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
|
bert_model = 'vinai/phobert-base-v2'
|
|
output_dir = 'E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2021/best_model'
|
|
output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
|
|
output_encoder_file = os.path.join(output_dir, "pytorch_encoder.bin")
|
|
processor = MNERProcessor_2021()
|
|
label_list = processor.get_labels()
|
|
auxlabel_list = processor.get_auxlabels()
|
|
num_labels = len(label_list) + 1
|
|
auxnum_labels = len(auxlabel_list) + 1
|
|
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
|
|
trans_matrix[0, 0] = 1
|
|
trans_matrix[1, 1] = 1
|
|
trans_matrix[2, 2] = 0.25
|
|
trans_matrix[2, 4] = 0.25
|
|
trans_matrix[2, 6] = 0.25
|
|
trans_matrix[2, 8] = 0.25
|
|
trans_matrix[3, 3] = 0.25
|
|
trans_matrix[3, 5] = 0.25
|
|
trans_matrix[3, 7] = 0.25
|
|
trans_matrix[3, 9] = 0.25
|
|
trans_matrix[4, 10] = 1
|
|
trans_matrix[5, 11] = 1
|
|
trans_matrix[6, 12] = 1
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_model, do_lower_case=False)
|
|
model_umt, encoder_umt = load_model(output_model_file, output_encoder_file, encoder, num_labels,
|
|
auxnum_labels)
|
|
eval_examples = get_test_examples_predict(
|
|
'E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2021/Filetxt/')
|
|
|
|
y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device, save_image, trans_matrix)
|
|
formatted_output = format_predictions(a, y_pred[0])
|
|
final = process_predictions(formatted_output)
|
|
final2 = combine_entities(final)
|
|
final3 = remove_B_prefix(final2)
|
|
final4 = combine_i_tags(final3)
|
|
|
|
words_and_labels = final4
|
|
|
|
words = [word for word, _ in words_and_labels]
|
|
|
|
entities = [{'start': sum(len(word) + 1 for word, _ in words_and_labels[:i]),
|
|
'end': sum(len(word) + 1 for word, _ in words_and_labels[:i + 1]), 'label': label} for
|
|
i, (word, label)
|
|
in enumerate(words_and_labels) if label != 'O']
|
|
|
|
|
|
|
|
html = displacy.render(
|
|
{"text": " ".join(words), "ents": entities, "title": None},
|
|
style="ent",
|
|
manual=True,
|
|
options={"colors": {"DATETIME-DATERANGE": "#66c2ff",
|
|
"LOCATION-GPE": "#ffcc99",
|
|
"O": None,
|
|
"QUANTITY-NUM": "#ffdf80",
|
|
"EVENT-CUL": "#bfbfbf",
|
|
"DATETIME": "#80ff80",
|
|
"PERSONTYPE": "#ff80ff",
|
|
"PERSON": "#bf80ff",
|
|
"QUANTITY-PER": "#80cccc",
|
|
"ORGANIZATION": "#ff6666",
|
|
"LOCATION-GEO": "#66cc66",
|
|
"LOCATION-STRUC": "#cccc66",
|
|
"PRODUCT-COM": "#ffff66",
|
|
"DATETIME-DATE": "#66cccc",
|
|
"QUANTITY-DIM": "#6666ff",
|
|
"PRODUCT": "#cc6666",
|
|
"QUANTITY": "#6666cc",
|
|
"DATETIME-DURATION": "#9966ff",
|
|
"QUANTITY-CUR": "#ff9966",
|
|
"DATETIME-TIME": "#cdbf93",
|
|
"QUANTITY-TEM": "#cc9966",
|
|
"DATETIME-TIMERANGE": "#cc8566",
|
|
"EVENT-GAMESHOW": "#8c8c5a",
|
|
"QUANTITY-AGE": "#70db70",
|
|
"QUANTITY-ORD": "#e699ff",
|
|
"PRODUCT-LEGAL": "#806699",
|
|
"LOCATION": "#993366",
|
|
"ORGANIZATION-MED": "#339933",
|
|
"URL": "#ff4d4d",
|
|
"PHONENUMBER": "#99cc99",
|
|
"ORGANIZATION-SPORTS": "#6666ff",
|
|
"EVENT-SPORT": "#ffff80",
|
|
"SKILL": "#b38f66",
|
|
"EVENT-NATURAL": "#ff9966",
|
|
"ADDRESS": "#cc9966",
|
|
"IP": "#b38f66",
|
|
"EMAIL": "#cc8566",
|
|
"ORGANIZATION-STOCK": "#666633",
|
|
"DATETIME-SET": "#70db70",
|
|
"PRODUCT-AWARD": "#e699ff",
|
|
"MISCELLANEOUS": "#806699",
|
|
"LOCATION-GPE-GEO": "#99ffff"}}
|
|
)
|
|
|
|
st.markdown(html, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|