File size: 6,185 Bytes
fd07025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import codecs
import numpy as np
def get_chunks(seq, tags):
"""
tags:dic{'per':1,....}
Args:
seq: [4, 4, 0, 0, ...] sequence of labels
tags: dict["O"] = 4
Returns:
list of (chunk_type, chunk_start, chunk_end)
Example:
seq = [4, 5, 0, 3]
tags = {"B-PER": 4, "I-PER": 5, "B-LOC": 3}
result = [("PER", 0, 2), ("LOC", 3, 4)]
"""
default = tags['O']
idx_to_tag = {idx: tag for tag, idx in tags.items()}
chunks = []
# chunk_type用于判断是什么类型,LOC,PER
chunk_type, chunk_start = None, None
for i, tok in enumerate(seq):
# End of a chunk 1
if tok == default and chunk_type is not None:
# Add a chunk.
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = None, None
# End of a chunk + start of a chunk!
elif tok != default:
# tok_chunk_class 判断是以B开头还是I开头
# tok_chunk_type 判断是什么类型,PER,LOC
tok_chunk_class, tok_chunk_type = get_chunk_type(tok, idx_to_tag)
if chunk_type is None:
chunk_type, chunk_start = tok_chunk_type, i
elif tok_chunk_type != chunk_type or tok_chunk_class == "B":
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = tok_chunk_type, i
else:
pass
# end condition
if chunk_type is not None:
chunk = (chunk_type, chunk_start, len(seq))
chunks.append(chunk)
return chunks
def get_chunk_type(tok, idx_to_tag):
"""
Args:
tok: id of token, such as 4
idx_to_tag: dictionary {4: "B-PER", ...}
Returns:
tuple: "B", "PER"
"""
tag_name = idx_to_tag[tok]
tag_class = tag_name.split('-')[0]
tag_type = tag_name.split('-')[-1]
return tag_class, tag_type
# def run_evaluate(self, sess, test, tags):
def evaluate(labels_pred, labels, words, tags):
"""
words,pred, right: is a sequence, is label index or word index.
Evaluates performance on test set
Args:
sess: tensorflow session
test: dataset that yields tuple of sentences, tags
tags: {tag: index} dictionary
Returns:
accuracy
f1 score
...
"""
# file_write = open('./test_results.txt','w')
index = 0
sents_length = []
accs = []
correct_preds, total_correct, total_preds = 0., 0., 0.
for lab, lab_pred, word_sent in zip(labels, labels_pred, words):
word_st = word_sent
lab = lab
lab_pred = lab_pred
accs += [a == b for (a, b) in zip(lab, lab_pred)]
lab_chunks = set(get_chunks(lab, tags))
lab_pred_chunks = set(get_chunks(lab_pred, tags))
correct_preds += len(lab_chunks & lab_pred_chunks)
total_preds += len(lab_pred_chunks)
total_correct += len(lab_chunks)
# for i in range(len(word_st)):
# file_write.write('%s\t%s\t%s\n'%(word_st[i],lab[i],lab_pred[i]))
# file_write.write('\n')
p = correct_preds / total_preds if correct_preds > 0 else 0
r = correct_preds / total_correct if correct_preds > 0 else 0
f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0
acc = np.mean(accs)
# file_write.close()
return acc, f1, p, r
def evaluate_each_class(labels_pred, labels, words, tags, class_type):
# class_type:PER or LOC or ORG
index = 0
accs = []
correct_preds, total_correct, total_preds = 0., 0., 0.
correct_preds_cla_type, total_preds_cla_type, total_correct_cla_type = 0., 0., 0.
for lab, lab_pred, word_sent in zip(labels, labels_pred, words):
lab_pre_class_type = []
lab_class_type = []
word_st = word_sent
lab = lab
lab_pred = lab_pred
lab_chunks = get_chunks(lab, tags)
lab_pred_chunks = get_chunks(lab_pred, tags)
for i in range(len(lab_pred_chunks)):
if lab_pred_chunks[i][0] == class_type:
lab_pre_class_type.append(lab_pred_chunks[i])
lab_pre_class_type_c = set(lab_pre_class_type)
for i in range(len(lab_chunks)):
if lab_chunks[i][0] == class_type:
lab_class_type.append(lab_chunks[i])
lab_class_type_c = set(lab_class_type)
lab_chunksss = set(lab_chunks)
correct_preds_cla_type += len(lab_pre_class_type_c & lab_chunksss)
total_preds_cla_type += len(lab_pre_class_type_c)
total_correct_cla_type += len(lab_class_type_c)
p = correct_preds_cla_type / total_preds_cla_type if correct_preds_cla_type > 0 else 0
r = correct_preds_cla_type / total_correct_cla_type if correct_preds_cla_type > 0 else 0
f1 = 2 * p * r / (p + r) if correct_preds_cla_type > 0 else 0
return f1, p, r
if __name__ == '__main__':
max_sent = 10
tags = {'0': 0,
'B-PER': 1, 'I-PER': 2,
'B-LOC': 3, 'I-LOC': 4,
'B-ORG': 5, 'I-ORG': 6,
'B-OTHER': 7, 'I-OTHER': 8,
'O': 9}
labels_pred = [
[9, 9, 9, 1, 3, 1, 2, 2, 0, 0],
[9, 9, 9, 1, 3, 1, 2, 0, 0, 0]
]
labels = [
[9, 9, 9, 9, 3, 1, 2, 2, 0, 0],
[9, 9, 9, 9, 3, 1, 2, 2, 0, 0]
]
words = [
[0, 0, 0, 0, 0, 3, 6, 8, 5, 7],
[0, 0, 0, 4, 5, 6, 7, 9, 1, 7]
]
id_to_vocb = {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f', 6: 'g', 7: 'h', 8: 'i', 9: 'j'}
# new_words = []
# for i in range(len(words)):
# sent = []
# for j in range(len(words[i])):
# sent.append(id_to_vocb[words[i][j]])
# new_words.append(sent)
# class_type = 'PER'
# acc, f1,p,r = evaluate(labels_pred, labels,new_words,tags)
# print(p,r,f1)
# f1,p,r = evaluate_each_class(labels_pred, labels,new_words,tags, class_type)
# print(p,r,f1)
acc, f1, p, r = evaluate(labels_pred, labels, words, tags)
print(acc) |