File size: 15,863 Bytes
fd07025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import torch
import logging
import os
logger = logging.getLogger(__name__)
from torchvision import transforms
from PIL import Image
class SBInputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b, img_id, label=None, auxlabel=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.img_id = img_id
self.label = label
# Please note that the auxlabel is not used in SB
# it is just kept in order not to modify the original code
self.auxlabel = auxlabel
class SBInputFeatures(object):
"""A single set of features of data"""
def __init__(self, input_ids, input_mask, added_input_mask, segment_ids, img_feat, label_id, auxlabel_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.added_input_mask = added_input_mask
self.segment_ids = segment_ids
self.img_feat = img_feat
self.label_id = label_id
self.auxlabel_id = auxlabel_id
def sbreadfile(filename):
'''
Đọc dữ liệu từ tệp và trả về dưới dạng danh sách các cặp từ và nhãn, cùng với danh sách hình ảnh và nhãn phụ.
'''
print("Chuẩn bị dữ liệu cho ", filename)
f = open(filename, encoding='utf8')
data = []
imgs = []
auxlabels = []
sentence = []
label = []
auxlabel = []
imgid = ''
for line in f:
line = line.strip() # Loại bỏ các dấu cách thừa ở đầu và cuối dòng
if line.startswith('IMGID:'):
imgid = line.split('IMGID:')[1] + '.jpg'
continue
if line == '':
if len(sentence) > 0:
data.append((sentence, label))
imgs.append(imgid)
auxlabels.append(auxlabel)
sentence = []
label = []
auxlabel = []
imgid = ''
continue
splits = line.split('\t')
if len(splits) == 2: # Đảm bảo dòng có ít nhất một từ và một nhãn
word, cur_label = splits
sentence.append(word)
label.append(cur_label)
auxlabel.append(cur_label[0]) # Lấy ký tự đầu tiên của nhãn làm nhãn phụ
if len(sentence) > 0: # Xử lý dữ liệu cuối cùng trong tệp
data.append((sentence, label))
imgs.append(imgid)
auxlabels.append(auxlabel)
print("Số lượng mẫu: " + str(len(data)))
print("Số lượng hình ảnh: " + str(len(imgs)))
return data, imgs, auxlabels
# def sbreadfile(filename): #code gốc
# '''
# read file
# return format :
# [ ['EU', 'B-ORG'], ['rejects', 'O'], ['German', 'B-MISC'], ['call', 'O'], ['to', 'O'], ['boycott', 'O'], ['British', 'B-MISC'], ['lamb', 'O'], ['.', 'O'] ]
# '''
# print("prepare data for ",filename)
# f = open(filename,encoding='utf8')
# data = []
# imgs = []
# auxlabels = []
# sentence = []
# label = []
# auxlabel = []
# imgid = ''
# a = 0
# for line in f:
# if line.startswith('IMGID:'):
# imgid = line.strip().split('IMGID:')[1] + '.jpg'
# continue
# if line[0] == "\n":
# if len(sentence) > 0:
# data.append((sentence, label))
# imgs.append(imgid)
# auxlabels.append(auxlabel)
# sentence = []
# label = []
# imgid = ''
# auxlabel = []
# continue
# splits = line.split('\t')
# sentence.append(splits[0])
# cur_label = splits[-1][:-1]
# # if cur_label == 'B-OTHER':
# # cur_label = 'B-MISC'
# # elif cur_label == 'I-OTHER':
# # cur_label = 'I-MISC'
# label.append(cur_label)
# auxlabel.append(cur_label[0])
# if len(sentence) > 0:
# data.append((sentence, label))
# imgs.append(imgid)
# auxlabels.append(auxlabel)
# sentence = []
# label = []
# auxlabel = []
# print("The number of samples: " + str(len(data)))
# print("The number of images: " + str(len(imgs)))
# return data, imgs, auxlabels
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_sbtsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
return sbreadfile(input_file)
class MNERProcessor_2016(DataProcessor):
"""Processor for the CoNLL-2003 data set."""
def get_train_examples(self, data_dir):
"""See base class."""
data, imgs, auxlabels = self._read_sbtsv(os.path.join(data_dir, "train.txt"))
return self._create_examples(data, imgs, auxlabels, "train")
def get_dev_examples(self, data_dir):
"""See base class."""
data, imgs, auxlabels = self._read_sbtsv(os.path.join(data_dir, "dev.txt"))
return self._create_examples(data, imgs, auxlabels, "dev")
def get_test_examples(self, data_dir):
"""See base class."""
data, imgs, auxlabels = self._read_sbtsv(os.path.join(data_dir, "test.txt"))
return self._create_examples(data, imgs, auxlabels, "test")
def get_labels(self):
# return [
# "O","I-PRODUCT-AWARD",
# "B-MISCELLANEOUS",
# "B-QUANTITY-NUM",
# "B-ORGANIZATION-SPORTS",
# "B-DATETIME",
# "I-ADDRESS",
# "I-PERSON",
# "I-EVENT-SPORT",
# "B-ADDRESS",
# "B-EVENT-NATURAL",
# "I-LOCATION-GPE",
# "B-EVENT-GAMESHOW",
# "B-DATETIME-TIMERANGE",
# "I-QUANTITY-NUM",
# "I-QUANTITY-AGE",
# "B-EVENT-CUL",
# "I-QUANTITY-TEM",
# "I-PRODUCT-LEGAL",
# "I-LOCATION-STRUC",
# "I-ORGANIZATION",
# "B-PHONENUMBER",
# "B-IP",
# "B-QUANTITY-AGE",
# "I-DATETIME-TIME",
# "I-DATETIME",
# "B-ORGANIZATION-MED",
# "B-DATETIME-SET",
# "I-EVENT-CUL",
# "B-QUANTITY-DIM",
# "I-QUANTITY-DIM",
# "B-EVENT",
# "B-DATETIME-DATERANGE",
# "I-EVENT-GAMESHOW",
# "B-PRODUCT-AWARD",
# "B-LOCATION-STRUC",
# "B-LOCATION",
# "B-PRODUCT",
# "I-MISCELLANEOUS",
# "B-SKILL",
# "I-QUANTITY-ORD",
# "I-ORGANIZATION-STOCK",
# "I-LOCATION-GEO",
# "B-PERSON",
# "B-PRODUCT-COM",
# "B-PRODUCT-LEGAL",
# "I-LOCATION",
# "B-QUANTITY-TEM",
# "I-PRODUCT",
# "B-QUANTITY-CUR",
# "I-QUANTITY-CUR",
# "B-LOCATION-GPE",
# "I-PHONENUMBER",
# "I-ORGANIZATION-MED",
# "I-EVENT-NATURAL",
# "I-EMAIL",
# "B-ORGANIZATION",
# "B-URL",
# "I-DATETIME-TIMERANGE",
# "I-QUANTITY",
# "I-IP",
# "B-EVENT-SPORT",
# "B-PERSONTYPE",
# "B-QUANTITY-PER",
# "I-QUANTITY-PER",
# "I-PRODUCT-COM",
# "I-DATETIME-DURATION",
# "B-LOCATION-GPE-GEO",
# "B-QUANTITY-ORD",
# "I-EVENT",
# "B-DATETIME-TIME",
# "B-QUANTITY",
# "I-DATETIME-SET",
# "I-LOCATION-GPE-GEO",
# "B-ORGANIZATION-STOCK",
# "I-ORGANIZATION-SPORTS",
# "I-SKILL",
# "I-URL",
# "B-DATETIME-DURATION",
# "I-DATETIME-DATE",
# "I-PERSONTYPE",
# "B-DATETIME-DATE",
# "I-DATETIME-DATERANGE",
# "B-LOCATION-GEO",
# "B-EMAIL","X","<s>", "</s>"]
# vlsp2016
return [
"B-ORG", "B-MISC",
"I-PER",
"I-ORG",
"B-LOC",
"I-MISC",
"I-LOC",
"O",
"B-PER",
"X",
"<s>",
"</s>"]
# vlsp2018
# return [
# "O","I-ORGANIZATION",
# "B-ORGANIZATION",
# "I-LOCATION",
# "B-MISCELLANEOUS",
# "I-PERSON",
# "B-PERSON",
# "I-MISCELLANEOUS",
# "B-LOCATION",
# "X",
# "<s>",
# "</s>"]
def get_auxlabels(self):
return ["O", "B", "I", "X", "<s>", "</s>"]
def get_start_label_id(self):
label_list = self.get_labels()
label_map = {label: i for i, label in enumerate(label_list, 1)}
return label_map['<s>']
def get_stop_label_id(self):
label_list = self.get_labels()
label_map = {label: i for i, label in enumerate(label_list, 1)}
return label_map['</s>']
def _create_examples(self, lines, imgs, auxlabels, set_type):
examples = []
for i, (sentence, label) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = ' '.join(sentence)
text_b = None
img_id = imgs[i]
label = label
auxlabel = auxlabels[i]
examples.append(
SBInputExample(guid=guid, text_a=text_a, text_b=text_b, img_id=img_id, label=label, auxlabel=auxlabel))
return examples
def image_process(image_path, transform):
image = Image.open(image_path).convert('RGB')
image = transform(image)
return image
def convert_mm_examples_to_features(examples, label_list, auxlabel_list,
max_seq_length, tokenizer, crop_size, path_img):
label_map = {label: i for i, label in enumerate(label_list, 1)}
auxlabel_map = {label: i for i, label in enumerate(auxlabel_list, 1)}
features = []
count = 0
transform = transforms.Compose([
transforms.Resize([256, 256]),
transforms.RandomCrop(crop_size), # args.crop_size, by default it is set to be 224
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
for (ex_index, example) in enumerate(examples):
textlist = example.text_a.split(' ')
labellist = example.label
auxlabellist = example.auxlabel
tokens = []
labels = []
auxlabels = []
for i, word in enumerate(textlist):
token = tokenizer.tokenize(word)
tokens.extend(token)
label_1 = labellist[i]
auxlabel_1 = auxlabellist[i]
for m in range(len(token)):
if m == 0:
labels.append(label_1)
auxlabels.append(auxlabel_1)
else:
labels.append("X")
auxlabels.append("X")
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)]
labels = labels[0:(max_seq_length - 2)]
auxlabels = auxlabels[0:(max_seq_length - 2)]
ntokens = []
segment_ids = []
label_ids = []
auxlabel_ids = []
ntokens.append("<s>")
segment_ids.append(0)
label_ids.append(label_map["<s>"])
auxlabel_ids.append(auxlabel_map["<s>"])
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
label_ids.append(label_map[labels[i]])
auxlabel_ids.append(auxlabel_map[auxlabels[i]])
ntokens.append("</s>")
segment_ids.append(0)
label_ids.append(label_map["</s>"])
auxlabel_ids.append(auxlabel_map["</s>"])
input_ids = tokenizer.convert_tokens_to_ids(ntokens)
input_mask = [1] * len(input_ids)
added_input_mask = [1] * (len(input_ids) + 49) # 1 or 49 is for encoding regional image representations
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
added_input_mask.append(0)
segment_ids.append(0)
label_ids.append(0)
auxlabel_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
assert len(auxlabel_ids) == max_seq_length
image_name = example.img_id
image_path = os.path.join(path_img, image_name)
if not os.path.exists(image_path):
if 'NaN' not in image_path:
print(image_path)
try:
image = image_process(image_path, transform)
except:
count += 1
image_path_fail = os.path.join(path_img, 'background.jpg')
image = image_process(image_path_fail, transform)
else:
if ex_index < 2:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s" % " ".join([str(x) for x in label_ids]))
logger.info("auxlabel: %s" % " ".join([str(x) for x in auxlabel_ids]))
features.append(
SBInputFeatures(input_ids=input_ids, input_mask=input_mask, added_input_mask=added_input_mask,
segment_ids=segment_ids, img_feat=image, label_id=label_ids, auxlabel_id=auxlabel_ids))
print('the number of problematic samples: ' + str(count))
return features
# if __name__ == "__main__":
# processor = MNERProcessor_2016()
# label_list = processor.get_labels()
# auxlabel_list = processor.get_auxlabels()
# num_labels = len(label_list) + 1 # label 0 corresponds to padding, label in label_list starts from 1
#
# start_label_id = processor.get_start_label_id()
# stop_label_id = processor.get_stop_label_id()
#
# data_dir = r'sample_data'
# train_examples = processor.get_train_examples(data_dir)
# print(train_examples[0].img_id) |