File size: 5,169 Bytes
5d73d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd07025
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import streamlit as st
from spacy import displacy
from Model.NER.VLSP2021.Predict_Ner import ViTagger
import re
from thunghiemxuly import save_uploaded_image,convert_text_to_txt,add_string_to_txt

import os
from transformers import AutoTokenizer, BertConfig
from Model.MultimodelNER.VLSP2016.train_umt_2016 import load_model,predict
from Model.MultimodelNER.Ner_processing import format_predictions,process_predictions,combine_entities,remove_B_prefix,combine_i_tags

from Model.MultimodelNER.predict import get_test_examples_predict
from Model.MultimodelNER import resnet as resnet
from Model.MultimodelNER.resnet_utils import myResnet
import torch
import numpy as np
from Model.MultimodelNER.VLSP2016.dataset_roberta import MNERProcessor_2016


CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


net = getattr(resnet, 'resnet152')()
net.load_state_dict(torch.load(os.path.join('/Model/Resnet/', 'resnet152.pth')))
encoder = myResnet(net, True, device)
def process_text(text):
    # Loại bỏ dấu cách thừa và dấu cách ở đầu và cuối văn bản
    processed_text = re.sub(r'\s+', ' ', text.strip())
    return processed_text



def show_mner_2016():
    multimodal_text = st.text_area("Enter your text for MNER:", height=300)
    multimodal_text = process_text(multimodal_text)  # Xử lý văn bản
    image = st.file_uploader("Upload an image (only jpg):", type=["jpg"])
    if st.button("Process Multimodal NER"):
            save_image = '/Model/MultimodelNER/VLSP2016/Image'
            save_txt = '/Model/MultimodelNER/VLSP2016/Filetxt/test.txt'
            image_name = image.name
            save_uploaded_image(image, save_image)
            convert_text_to_txt(multimodal_text, save_txt)
            add_string_to_txt(image_name, save_txt)
            st.image(image, caption="Uploaded Image", use_column_width=True)

            bert_model='vinai/phobert-base-v2'
            output_dir='/Model/MultimodelNER/VLSP2016/best_model'
            output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
            output_encoder_file = os.path.join(output_dir, "pytorch_encoder.bin")
            processor = MNERProcessor_2016()
            label_list = processor.get_labels()
            auxlabel_list = processor.get_auxlabels()
            num_labels = len(label_list) + 1
            auxnum_labels = len(auxlabel_list) + 1
            trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
            trans_matrix[0, 0] = 1  # pad to pad
            trans_matrix[1, 1] = 1  # O to O
            trans_matrix[2, 2] = 0.25  # B to B-MISC
            trans_matrix[2, 4] = 0.25  # B to B-PER
            trans_matrix[2, 6] = 0.25  # B to B-ORG
            trans_matrix[2, 8] = 0.25  # B to B-LOC
            trans_matrix[3, 3] = 0.25  # I to I-MISC
            trans_matrix[3, 5] = 0.25  # I to I-PER
            trans_matrix[3, 7] = 0.25  # I to I-ORG
            trans_matrix[3, 9] = 0.25  # I to I-LOC
            trans_matrix[4, 10] = 1  # X to X
            trans_matrix[5, 11] = 1  # [CLS] to [CLS]
            trans_matrix[6, 12] = 1
            tokenizer = AutoTokenizer.from_pretrained(bert_model, do_lower_case=False)
            model_umt, encoder_umt = load_model(output_model_file, output_encoder_file, encoder,num_labels,auxnum_labels)
            eval_examples = get_test_examples_predict('/Model/MultimodelNER/VLSP2016/Filetxt/')

            y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device,save_image,trans_matrix)
            formatted_output = format_predictions(a, y_pred[0])
            final = process_predictions(formatted_output)
            final2 = combine_entities(final)
            final3 = remove_B_prefix(final2)
            final4 = combine_i_tags(final3)
            words_and_labels = final4
            # Tạo danh sách từ
            words = [word for word, _ in words_and_labels]
            # Tạo danh sách thực thể và nhãn cho mỗi từ, loại bỏ nhãn 'O'
            entities = [{'start': sum(len(word) + 1 for word, _ in words_and_labels[:i]),
                         'end': sum(len(word) + 1 for word, _ in words_and_labels[:i + 1]), 'label': label} for
                        i, (word, label)
                        in enumerate(words_and_labels) if label != 'O']
            # print(entities)

            # Render the visualization without color for 'O' labels
            html = displacy.render(
                {"text": " ".join(words), "ents": entities, "title": None},
                style="ent",
                manual=True,
                options={"colors": {"MISC": "#806699",
                                    "ORG": "#ff6666",
                                    "LOC": "#66cc66",
                                    "PER": "#bf80ff",
                                    "O": None}}
            )
            # print(html)
            st.markdown(html, unsafe_allow_html=True)


###Ví dụ 1 : Một trận hỗn chiến đã xảy ra tại trận đấu khúc côn cầu giữa  Penguins và Islanders ở Mỹ (image:penguin)