File size: 1,855 Bytes
90210ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd07025
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
from spacy import displacy
from Model.NER.VLSP2021.Predict_Ner import ViTagger
import re
from thunghiemxuly import save_uploaded_image,convert_text_to_txt,add_string_to_txt

import os
from transformers import AutoTokenizer, BertConfig
from Model.MultimodelNER.VLSP2016.train_umt_2016 import format_predictions,process_predictions,combine_entities,remove_B_prefix,load_model,predict
from Model.MultimodelNER.predict import get_test_examples_predict
from Model.MultimodelNER import resnet as resnet
from Model.MultimodelNER.resnet_utils import myResnet
import torch
import numpy as np
from Model.MultimodelNER.VLSP2016.dataset_roberta import MNERProcessor_2016
from Model.MultimodelNER.VLSP2016.MNER_2016 import show_mner_2016
from Model.MultimodelNER.VLSP2021.MNER_2021 import show_mner_2021

CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


net = getattr(resnet, 'resnet152')()
net.load_state_dict(torch.load(os.path.join('/Model/Resnet/', 'resnet152.pth')))
encoder = myResnet(net, True, device)
def process_text(text):
    # Loại bỏ dấu cách thừa và dấu cách ở đầu và cuối văn bản
    processed_text = re.sub(r'\s+', ' ', text.strip())
    return processed_text



def show_mner():
    st.sidebar.title('Datasets')
    dataset = st.sidebar.selectbox("Datasets", ("VLSP2016", "VLSP2021"))
    st.header("Multimodal NER")
    if dataset == 'VLSP2016':
        show_mner_2016()
    else:
        show_mner_2021()


        # Sử dụng widget st.html để hiển thị HTML

    # Hiển thị văn bản đã nhập
    # st.write("Văn bản đã nhập:", text)


###Ví dụ 1 : Một trận hỗn chiến đã xảy ra tại trận đấu khúc côn cầu giữa  Penguins và Islanders ở Mỹ (image:penguin)