Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,684 Bytes
843bd97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import math
import os
from functools import partial
from fvcore.common.checkpoint import PeriodicCheckpointer
import torch
from dinov2.data import SamplerType, make_data_loader, make_dataset
from dinov2.data import collate_data_and_cast, DataAugmentationDINO, MaskingGenerator
import dinov2.distributed as distributed
from dinov2.fsdp import FSDPCheckpointer
from dinov2.logging import MetricLogger
from dinov2.utils.config import setup
from dinov2.utils.utils import CosineScheduler
from dinov2.train.ssl_meta_arch import SSLMetaArch
torch.backends.cuda.matmul.allow_tf32 = True # PyTorch 1.12 sets this to False by default
logger = logging.getLogger("dinov2")
def get_args_parser(add_help: bool = True):
parser = argparse.ArgumentParser("DINOv2 training", add_help=add_help)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument(
"--no-resume",
action="store_true",
help="Whether to not attempt to resume from the checkpoint directory. ",
)
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
parser.add_argument("--eval", type=str, default="", help="Eval type to perform")
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument(
"--output-dir",
"--output_dir",
default="",
type=str,
help="Output directory to save logs and checkpoints",
)
return parser
def build_optimizer(cfg, params_groups):
return torch.optim.AdamW(params_groups, betas=(cfg.optim.adamw_beta1, cfg.optim.adamw_beta2))
def build_schedulers(cfg):
OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
lr = dict(
base_value=cfg.optim["lr"],
final_value=cfg.optim["min_lr"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
warmup_iters=cfg.optim["warmup_epochs"] * OFFICIAL_EPOCH_LENGTH,
start_warmup_value=0,
)
wd = dict(
base_value=cfg.optim["weight_decay"],
final_value=cfg.optim["weight_decay_end"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
)
momentum = dict(
base_value=cfg.teacher["momentum_teacher"],
final_value=cfg.teacher["final_momentum_teacher"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
)
teacher_temp = dict(
base_value=cfg.teacher["teacher_temp"],
final_value=cfg.teacher["teacher_temp"],
total_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
warmup_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
start_warmup_value=cfg.teacher["warmup_teacher_temp"],
)
lr_schedule = CosineScheduler(**lr)
wd_schedule = CosineScheduler(**wd)
momentum_schedule = CosineScheduler(**momentum)
teacher_temp_schedule = CosineScheduler(**teacher_temp)
last_layer_lr_schedule = CosineScheduler(**lr)
last_layer_lr_schedule.schedule[
: cfg.optim["freeze_last_layer_epochs"] * OFFICIAL_EPOCH_LENGTH
] = 0 # mimicking the original schedules
logger.info("Schedulers ready.")
return (
lr_schedule,
wd_schedule,
momentum_schedule,
teacher_temp_schedule,
last_layer_lr_schedule,
)
def apply_optim_scheduler(optimizer, lr, wd, last_layer_lr):
for param_group in optimizer.param_groups:
is_last_layer = param_group["is_last_layer"]
lr_multiplier = param_group["lr_multiplier"]
wd_multiplier = param_group["wd_multiplier"]
param_group["weight_decay"] = wd * wd_multiplier
param_group["lr"] = (last_layer_lr if is_last_layer else lr) * lr_multiplier
def do_test(cfg, model, iteration):
new_state_dict = model.teacher.state_dict()
if distributed.is_main_process():
iterstring = str(iteration)
eval_dir = os.path.join(cfg.train.output_dir, "eval", iterstring)
os.makedirs(eval_dir, exist_ok=True)
# save teacher checkpoint
teacher_ckp_path = os.path.join(eval_dir, "teacher_checkpoint.pth")
torch.save({"teacher": new_state_dict}, teacher_ckp_path)
def do_train(cfg, model, resume=False):
model.train()
inputs_dtype = torch.half
fp16_scaler = model.fp16_scaler # for mixed precision training
# setup optimizer
optimizer = build_optimizer(cfg, model.get_params_groups())
(
lr_schedule,
wd_schedule,
momentum_schedule,
teacher_temp_schedule,
last_layer_lr_schedule,
) = build_schedulers(cfg)
# checkpointer
checkpointer = FSDPCheckpointer(model, cfg.train.output_dir, optimizer=optimizer, save_to_disk=True)
start_iter = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH
periodic_checkpointer = PeriodicCheckpointer(
checkpointer,
period=3 * OFFICIAL_EPOCH_LENGTH,
max_iter=max_iter,
max_to_keep=3,
)
# setup data preprocessing
img_size = cfg.crops.global_crops_size
patch_size = cfg.student.patch_size
n_tokens = (img_size // patch_size) ** 2
mask_generator = MaskingGenerator(
input_size=(img_size // patch_size, img_size // patch_size),
max_num_patches=0.5 * img_size // patch_size * img_size // patch_size,
)
data_transform = DataAugmentationDINO(
cfg.crops.global_crops_scale,
cfg.crops.local_crops_scale,
cfg.crops.local_crops_number,
global_crops_size=cfg.crops.global_crops_size,
local_crops_size=cfg.crops.local_crops_size,
)
collate_fn = partial(
collate_data_and_cast,
mask_ratio_tuple=cfg.ibot.mask_ratio_min_max,
mask_probability=cfg.ibot.mask_sample_probability,
n_tokens=n_tokens,
mask_generator=mask_generator,
dtype=inputs_dtype,
)
# setup data loader
dataset = make_dataset(
dataset_str=cfg.train.dataset_path,
transform=data_transform,
target_transform=lambda _: (),
)
# sampler_type = SamplerType.INFINITE
sampler_type = SamplerType.SHARDED_INFINITE
data_loader = make_data_loader(
dataset=dataset,
batch_size=cfg.train.batch_size_per_gpu,
num_workers=cfg.train.num_workers,
shuffle=True,
seed=start_iter, # TODO: Fix this -- cfg.train.seed
sampler_type=sampler_type,
sampler_advance=0, # TODO(qas): fix this -- start_iter * cfg.train.batch_size_per_gpu,
drop_last=True,
collate_fn=collate_fn,
)
# training loop
iteration = start_iter
logger.info("Starting training from iteration {}".format(start_iter))
metrics_file = os.path.join(cfg.train.output_dir, "training_metrics.json")
metric_logger = MetricLogger(delimiter=" ", output_file=metrics_file)
header = "Training"
for data in metric_logger.log_every(
data_loader,
10,
header,
max_iter,
start_iter,
):
current_batch_size = data["collated_global_crops"].shape[0] / 2
if iteration > max_iter:
return
# apply schedules
lr = lr_schedule[iteration]
wd = wd_schedule[iteration]
mom = momentum_schedule[iteration]
teacher_temp = teacher_temp_schedule[iteration]
last_layer_lr = last_layer_lr_schedule[iteration]
apply_optim_scheduler(optimizer, lr, wd, last_layer_lr)
# compute losses
optimizer.zero_grad(set_to_none=True)
loss_dict = model.forward_backward(data, teacher_temp=teacher_temp)
# clip gradients
if fp16_scaler is not None:
if cfg.optim.clip_grad:
fp16_scaler.unscale_(optimizer)
for v in model.student.values():
v.clip_grad_norm_(cfg.optim.clip_grad)
fp16_scaler.step(optimizer)
fp16_scaler.update()
else:
if cfg.optim.clip_grad:
for v in model.student.values():
v.clip_grad_norm_(cfg.optim.clip_grad)
optimizer.step()
# perform teacher EMA update
model.update_teacher(mom)
# logging
if distributed.get_global_size() > 1:
for v in loss_dict.values():
torch.distributed.all_reduce(v)
loss_dict_reduced = {k: v.item() / distributed.get_global_size() for k, v in loss_dict.items()}
if math.isnan(sum(loss_dict_reduced.values())):
logger.info("NaN detected")
raise AssertionError
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
metric_logger.update(lr=lr)
metric_logger.update(wd=wd)
metric_logger.update(mom=mom)
metric_logger.update(last_layer_lr=last_layer_lr)
metric_logger.update(current_batch_size=current_batch_size)
metric_logger.update(total_loss=losses_reduced, **loss_dict_reduced)
# checkpointing and testing
if cfg.evaluation.eval_period_iterations > 0 and (iteration + 1) % cfg.evaluation.eval_period_iterations == 0:
do_test(cfg, model, f"training_{iteration}")
torch.cuda.synchronize()
periodic_checkpointer.step(iteration)
iteration = iteration + 1
metric_logger.synchronize_between_processes()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def main(args):
cfg = setup(args)
model = SSLMetaArch(cfg).to(torch.device("cuda"))
model.prepare_for_distributed_training()
logger.info("Model:\n{}".format(model))
if args.eval_only:
iteration = (
FSDPCheckpointer(model, save_dir=cfg.train.output_dir)
.resume_or_load(cfg.MODEL.WEIGHTS, resume=not args.no_resume)
.get("iteration", -1)
+ 1
)
return do_test(cfg, model, f"manual_{iteration}")
do_train(cfg, model, resume=not args.no_resume)
if __name__ == "__main__":
args = get_args_parser(add_help=True).parse_args()
main(args)
|