Spaces:
Runtime error
Runtime error
Duplicate from nyanko7/sd-diffusers-webui
Browse filesCo-authored-by: Nyanko <[email protected]>
- .gitattributes +34 -0
- Dockerfile +22 -0
- README.md +14 -0
- app.py +878 -0
- modules/lora.py +183 -0
- modules/model.py +897 -0
- modules/prompt_parser.py +391 -0
- modules/safe.py +188 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dockerfile Public T4
|
2 |
+
|
3 |
+
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu22.04
|
4 |
+
ENV DEBIAN_FRONTEND noninteractive
|
5 |
+
|
6 |
+
WORKDIR /content
|
7 |
+
|
8 |
+
RUN apt-get update -y && apt-get upgrade -y && apt-get install -y libgl1 libglib2.0-0 wget git git-lfs python3-pip python-is-python3 && pip3 install --upgrade pip
|
9 |
+
|
10 |
+
RUN pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchsde --extra-index-url https://download.pytorch.org/whl/cu113
|
11 |
+
RUN pip install https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.16/xformers-0.0.16+814314d.d20230118-cp310-cp310-linux_x86_64.whl
|
12 |
+
RUN pip install --pre triton
|
13 |
+
RUN pip install numexpr einops transformers k_diffusion safetensors gradio diffusers==0.12.1
|
14 |
+
|
15 |
+
ADD . .
|
16 |
+
RUN adduser --disabled-password --gecos '' user
|
17 |
+
RUN chown -R user:user /content
|
18 |
+
RUN chmod -R 777 /content
|
19 |
+
USER user
|
20 |
+
|
21 |
+
EXPOSE 7860
|
22 |
+
CMD python /content/app.py
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Sd Diffusers Webui
|
3 |
+
emoji: 🐳
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: gray
|
6 |
+
sdk: docker
|
7 |
+
sdk_version: 3.9
|
8 |
+
pinned: false
|
9 |
+
license: openrail
|
10 |
+
app_port: 7860
|
11 |
+
duplicated_from: nyanko7/sd-diffusers-webui
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,878 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import tempfile
|
3 |
+
import time
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import math
|
8 |
+
import re
|
9 |
+
|
10 |
+
from gradio import inputs
|
11 |
+
from diffusers import (
|
12 |
+
AutoencoderKL,
|
13 |
+
DDIMScheduler,
|
14 |
+
UNet2DConditionModel,
|
15 |
+
)
|
16 |
+
from modules.model import (
|
17 |
+
CrossAttnProcessor,
|
18 |
+
StableDiffusionPipeline,
|
19 |
+
)
|
20 |
+
from torchvision import transforms
|
21 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
22 |
+
from PIL import Image
|
23 |
+
from pathlib import Path
|
24 |
+
from safetensors.torch import load_file
|
25 |
+
import modules.safe as _
|
26 |
+
from modules.lora import LoRANetwork
|
27 |
+
|
28 |
+
models = [
|
29 |
+
("AbyssOrangeMix2", "Korakoe/AbyssOrangeMix2-HF", 2),
|
30 |
+
("Pastal Mix", "andite/pastel-mix", 2),
|
31 |
+
("Basil Mix", "nuigurumi/basil_mix", 2)
|
32 |
+
]
|
33 |
+
|
34 |
+
keep_vram = ["Korakoe/AbyssOrangeMix2-HF", "andite/pastel-mix"]
|
35 |
+
base_name, base_model, clip_skip = models[0]
|
36 |
+
|
37 |
+
samplers_k_diffusion = [
|
38 |
+
("Euler a", "sample_euler_ancestral", {}),
|
39 |
+
("Euler", "sample_euler", {}),
|
40 |
+
("LMS", "sample_lms", {}),
|
41 |
+
("Heun", "sample_heun", {}),
|
42 |
+
("DPM2", "sample_dpm_2", {"discard_next_to_last_sigma": True}),
|
43 |
+
("DPM2 a", "sample_dpm_2_ancestral", {"discard_next_to_last_sigma": True}),
|
44 |
+
("DPM++ 2S a", "sample_dpmpp_2s_ancestral", {}),
|
45 |
+
("DPM++ 2M", "sample_dpmpp_2m", {}),
|
46 |
+
("DPM++ SDE", "sample_dpmpp_sde", {}),
|
47 |
+
("LMS Karras", "sample_lms", {"scheduler": "karras"}),
|
48 |
+
("DPM2 Karras", "sample_dpm_2", {"scheduler": "karras", "discard_next_to_last_sigma": True}),
|
49 |
+
("DPM2 a Karras", "sample_dpm_2_ancestral", {"scheduler": "karras", "discard_next_to_last_sigma": True}),
|
50 |
+
("DPM++ 2S a Karras", "sample_dpmpp_2s_ancestral", {"scheduler": "karras"}),
|
51 |
+
("DPM++ 2M Karras", "sample_dpmpp_2m", {"scheduler": "karras"}),
|
52 |
+
("DPM++ SDE Karras", "sample_dpmpp_sde", {"scheduler": "karras"}),
|
53 |
+
]
|
54 |
+
|
55 |
+
# samplers_diffusers = [
|
56 |
+
# ("DDIMScheduler", "diffusers.schedulers.DDIMScheduler", {})
|
57 |
+
# ("DDPMScheduler", "diffusers.schedulers.DDPMScheduler", {})
|
58 |
+
# ("DEISMultistepScheduler", "diffusers.schedulers.DEISMultistepScheduler", {})
|
59 |
+
# ]
|
60 |
+
|
61 |
+
start_time = time.time()
|
62 |
+
timeout = 90
|
63 |
+
|
64 |
+
scheduler = DDIMScheduler.from_pretrained(
|
65 |
+
base_model,
|
66 |
+
subfolder="scheduler",
|
67 |
+
)
|
68 |
+
vae = AutoencoderKL.from_pretrained(
|
69 |
+
"stabilityai/sd-vae-ft-ema",
|
70 |
+
torch_dtype=torch.float16
|
71 |
+
)
|
72 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
73 |
+
base_model,
|
74 |
+
subfolder="text_encoder",
|
75 |
+
torch_dtype=torch.float16,
|
76 |
+
)
|
77 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
78 |
+
base_model,
|
79 |
+
subfolder="tokenizer",
|
80 |
+
torch_dtype=torch.float16,
|
81 |
+
)
|
82 |
+
unet = UNet2DConditionModel.from_pretrained(
|
83 |
+
base_model,
|
84 |
+
subfolder="unet",
|
85 |
+
torch_dtype=torch.float16,
|
86 |
+
)
|
87 |
+
pipe = StableDiffusionPipeline(
|
88 |
+
text_encoder=text_encoder,
|
89 |
+
tokenizer=tokenizer,
|
90 |
+
unet=unet,
|
91 |
+
vae=vae,
|
92 |
+
scheduler=scheduler,
|
93 |
+
)
|
94 |
+
|
95 |
+
unet.set_attn_processor(CrossAttnProcessor)
|
96 |
+
pipe.setup_text_encoder(clip_skip, text_encoder)
|
97 |
+
if torch.cuda.is_available():
|
98 |
+
pipe = pipe.to("cuda")
|
99 |
+
|
100 |
+
def get_model_list():
|
101 |
+
return models
|
102 |
+
|
103 |
+
te_cache = {
|
104 |
+
base_model: text_encoder
|
105 |
+
}
|
106 |
+
|
107 |
+
unet_cache = {
|
108 |
+
base_model: unet
|
109 |
+
}
|
110 |
+
|
111 |
+
lora_cache = {
|
112 |
+
base_model: LoRANetwork(text_encoder, unet)
|
113 |
+
}
|
114 |
+
|
115 |
+
te_base_weight_length = text_encoder.get_input_embeddings().weight.data.shape[0]
|
116 |
+
original_prepare_for_tokenization = tokenizer.prepare_for_tokenization
|
117 |
+
current_model = base_model
|
118 |
+
|
119 |
+
def setup_model(name, lora_state=None, lora_scale=1.0):
|
120 |
+
global pipe, current_model
|
121 |
+
|
122 |
+
keys = [k[0] for k in models]
|
123 |
+
model = models[keys.index(name)][1]
|
124 |
+
if model not in unet_cache:
|
125 |
+
unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet", torch_dtype=torch.float16)
|
126 |
+
text_encoder = CLIPTextModel.from_pretrained(model, subfolder="text_encoder", torch_dtype=torch.float16)
|
127 |
+
|
128 |
+
unet_cache[model] = unet
|
129 |
+
te_cache[model] = text_encoder
|
130 |
+
lora_cache[model] = LoRANetwork(text_encoder, unet)
|
131 |
+
|
132 |
+
if current_model != model:
|
133 |
+
if current_model not in keep_vram:
|
134 |
+
# offload current model
|
135 |
+
unet_cache[current_model].to("cpu")
|
136 |
+
te_cache[current_model].to("cpu")
|
137 |
+
lora_cache[current_model].to("cpu")
|
138 |
+
current_model = model
|
139 |
+
|
140 |
+
local_te, local_unet, local_lora, = te_cache[model], unet_cache[model], lora_cache[model]
|
141 |
+
local_unet.set_attn_processor(CrossAttnProcessor())
|
142 |
+
local_lora.reset()
|
143 |
+
clip_skip = models[keys.index(name)][2]
|
144 |
+
|
145 |
+
if torch.cuda.is_available():
|
146 |
+
local_unet.to("cuda")
|
147 |
+
local_te.to("cuda")
|
148 |
+
|
149 |
+
if lora_state is not None and lora_state != "":
|
150 |
+
local_lora.load(lora_state, lora_scale)
|
151 |
+
local_lora.to(local_unet.device, dtype=local_unet.dtype)
|
152 |
+
|
153 |
+
pipe.text_encoder, pipe.unet = local_te, local_unet
|
154 |
+
pipe.setup_unet(local_unet)
|
155 |
+
pipe.tokenizer.prepare_for_tokenization = original_prepare_for_tokenization
|
156 |
+
pipe.tokenizer.added_tokens_encoder = {}
|
157 |
+
pipe.tokenizer.added_tokens_decoder = {}
|
158 |
+
pipe.setup_text_encoder(clip_skip, local_te)
|
159 |
+
return pipe
|
160 |
+
|
161 |
+
|
162 |
+
def error_str(error, title="Error"):
|
163 |
+
return (
|
164 |
+
f"""#### {title}
|
165 |
+
{error}"""
|
166 |
+
if error
|
167 |
+
else ""
|
168 |
+
)
|
169 |
+
|
170 |
+
def make_token_names(embs):
|
171 |
+
all_tokens = []
|
172 |
+
for name, vec in embs.items():
|
173 |
+
tokens = [f'emb-{name}-{i}' for i in range(len(vec))]
|
174 |
+
all_tokens.append(tokens)
|
175 |
+
return all_tokens
|
176 |
+
|
177 |
+
def setup_tokenizer(tokenizer, embs):
|
178 |
+
reg_match = [re.compile(fr"(?:^|(?<=\s|,)){k}(?=,|\s|$)") for k in embs.keys()]
|
179 |
+
clip_keywords = [' '.join(s) for s in make_token_names(embs)]
|
180 |
+
|
181 |
+
def parse_prompt(prompt: str):
|
182 |
+
for m, v in zip(reg_match, clip_keywords):
|
183 |
+
prompt = m.sub(v, prompt)
|
184 |
+
return prompt
|
185 |
+
|
186 |
+
def prepare_for_tokenization(self, text: str, is_split_into_words: bool = False, **kwargs):
|
187 |
+
text = parse_prompt(text)
|
188 |
+
r = original_prepare_for_tokenization(text, is_split_into_words, **kwargs)
|
189 |
+
return r
|
190 |
+
tokenizer.prepare_for_tokenization = prepare_for_tokenization.__get__(tokenizer, CLIPTokenizer)
|
191 |
+
return [t for sublist in make_token_names(embs) for t in sublist]
|
192 |
+
|
193 |
+
|
194 |
+
def convert_size(size_bytes):
|
195 |
+
if size_bytes == 0:
|
196 |
+
return "0B"
|
197 |
+
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
|
198 |
+
i = int(math.floor(math.log(size_bytes, 1024)))
|
199 |
+
p = math.pow(1024, i)
|
200 |
+
s = round(size_bytes / p, 2)
|
201 |
+
return "%s %s" % (s, size_name[i])
|
202 |
+
|
203 |
+
def inference(
|
204 |
+
prompt,
|
205 |
+
guidance,
|
206 |
+
steps,
|
207 |
+
width=512,
|
208 |
+
height=512,
|
209 |
+
seed=0,
|
210 |
+
neg_prompt="",
|
211 |
+
state=None,
|
212 |
+
g_strength=0.4,
|
213 |
+
img_input=None,
|
214 |
+
i2i_scale=0.5,
|
215 |
+
hr_enabled=False,
|
216 |
+
hr_method="Latent",
|
217 |
+
hr_scale=1.5,
|
218 |
+
hr_denoise=0.8,
|
219 |
+
sampler="DPM++ 2M Karras",
|
220 |
+
embs=None,
|
221 |
+
model=None,
|
222 |
+
lora_state=None,
|
223 |
+
lora_scale=None,
|
224 |
+
):
|
225 |
+
if seed is None or seed == 0:
|
226 |
+
seed = random.randint(0, 2147483647)
|
227 |
+
|
228 |
+
pipe = setup_model(model, lora_state, lora_scale)
|
229 |
+
generator = torch.Generator("cuda").manual_seed(int(seed))
|
230 |
+
start_time = time.time()
|
231 |
+
|
232 |
+
sampler_name, sampler_opt = None, None
|
233 |
+
for label, funcname, options in samplers_k_diffusion:
|
234 |
+
if label == sampler:
|
235 |
+
sampler_name, sampler_opt = funcname, options
|
236 |
+
|
237 |
+
tokenizer, text_encoder = pipe.tokenizer, pipe.text_encoder
|
238 |
+
if embs is not None and len(embs) > 0:
|
239 |
+
ti_embs = {}
|
240 |
+
for name, file in embs.items():
|
241 |
+
if str(file).endswith(".pt"):
|
242 |
+
loaded_learned_embeds = torch.load(file, map_location="cpu")
|
243 |
+
else:
|
244 |
+
loaded_learned_embeds = load_file(file, device="cpu")
|
245 |
+
loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"] if "string_to_param" in loaded_learned_embed else loaded_learned_embed
|
246 |
+
ti_embs[name] = loaded_learned_embeds
|
247 |
+
|
248 |
+
if len(ti_embs) > 0:
|
249 |
+
tokens = setup_tokenizer(tokenizer, ti_embs)
|
250 |
+
added_tokens = tokenizer.add_tokens(tokens)
|
251 |
+
delta_weight = torch.cat([val for val in ti_embs.values()], dim=0)
|
252 |
+
|
253 |
+
assert added_tokens == delta_weight.shape[0]
|
254 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
255 |
+
token_embeds = text_encoder.get_input_embeddings().weight.data
|
256 |
+
token_embeds[-delta_weight.shape[0]:] = delta_weight
|
257 |
+
|
258 |
+
config = {
|
259 |
+
"negative_prompt": neg_prompt,
|
260 |
+
"num_inference_steps": int(steps),
|
261 |
+
"guidance_scale": guidance,
|
262 |
+
"generator": generator,
|
263 |
+
"sampler_name": sampler_name,
|
264 |
+
"sampler_opt": sampler_opt,
|
265 |
+
"pww_state": state,
|
266 |
+
"pww_attn_weight": g_strength,
|
267 |
+
"start_time": start_time,
|
268 |
+
"timeout": timeout,
|
269 |
+
}
|
270 |
+
|
271 |
+
if img_input is not None:
|
272 |
+
ratio = min(height / img_input.height, width / img_input.width)
|
273 |
+
img_input = img_input.resize(
|
274 |
+
(int(img_input.width * ratio), int(img_input.height * ratio)), Image.LANCZOS
|
275 |
+
)
|
276 |
+
result = pipe.img2img(prompt, image=img_input, strength=i2i_scale, **config)
|
277 |
+
elif hr_enabled:
|
278 |
+
result = pipe.txt2img(
|
279 |
+
prompt,
|
280 |
+
width=width,
|
281 |
+
height=height,
|
282 |
+
upscale=True,
|
283 |
+
upscale_x=hr_scale,
|
284 |
+
upscale_denoising_strength=hr_denoise,
|
285 |
+
**config,
|
286 |
+
**latent_upscale_modes[hr_method],
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
result = pipe.txt2img(prompt, width=width, height=height, **config)
|
290 |
+
|
291 |
+
end_time = time.time()
|
292 |
+
vram_free, vram_total = torch.cuda.mem_get_info()
|
293 |
+
print(f"done: model={model}, res={width}x{height}, step={steps}, time={round(end_time-start_time, 2)}s, vram_alloc={convert_size(vram_total-vram_free)}/{convert_size(vram_total)}")
|
294 |
+
return gr.Image.update(result[0][0], label=f"Initial Seed: {seed}")
|
295 |
+
|
296 |
+
|
297 |
+
color_list = []
|
298 |
+
|
299 |
+
|
300 |
+
def get_color(n):
|
301 |
+
for _ in range(n - len(color_list)):
|
302 |
+
color_list.append(tuple(np.random.random(size=3) * 256))
|
303 |
+
return color_list
|
304 |
+
|
305 |
+
|
306 |
+
def create_mixed_img(current, state, w=512, h=512):
|
307 |
+
w, h = int(w), int(h)
|
308 |
+
image_np = np.full([h, w, 4], 255)
|
309 |
+
if state is None:
|
310 |
+
state = {}
|
311 |
+
|
312 |
+
colors = get_color(len(state))
|
313 |
+
idx = 0
|
314 |
+
|
315 |
+
for key, item in state.items():
|
316 |
+
if item["map"] is not None:
|
317 |
+
m = item["map"] < 255
|
318 |
+
alpha = 150
|
319 |
+
if current == key:
|
320 |
+
alpha = 200
|
321 |
+
image_np[m] = colors[idx] + (alpha,)
|
322 |
+
idx += 1
|
323 |
+
|
324 |
+
return image_np
|
325 |
+
|
326 |
+
|
327 |
+
# width.change(apply_new_res, inputs=[width, height, global_stats], outputs=[global_stats, sp, rendered])
|
328 |
+
def apply_new_res(w, h, state):
|
329 |
+
w, h = int(w), int(h)
|
330 |
+
|
331 |
+
for key, item in state.items():
|
332 |
+
if item["map"] is not None:
|
333 |
+
item["map"] = resize(item["map"], w, h)
|
334 |
+
|
335 |
+
update_img = gr.Image.update(value=create_mixed_img("", state, w, h))
|
336 |
+
return state, update_img
|
337 |
+
|
338 |
+
|
339 |
+
def detect_text(text, state, width, height):
|
340 |
+
|
341 |
+
if text is None or text == "":
|
342 |
+
return None, None, gr.Radio.update(value=None), None
|
343 |
+
|
344 |
+
t = text.split(",")
|
345 |
+
new_state = {}
|
346 |
+
|
347 |
+
for item in t:
|
348 |
+
item = item.strip()
|
349 |
+
if item == "":
|
350 |
+
continue
|
351 |
+
if state is not None and item in state:
|
352 |
+
new_state[item] = {
|
353 |
+
"map": state[item]["map"],
|
354 |
+
"weight": state[item]["weight"],
|
355 |
+
"mask_outsides": state[item]["mask_outsides"],
|
356 |
+
}
|
357 |
+
else:
|
358 |
+
new_state[item] = {
|
359 |
+
"map": None,
|
360 |
+
"weight": 0.5,
|
361 |
+
"mask_outsides": False
|
362 |
+
}
|
363 |
+
update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None)
|
364 |
+
update_img = gr.update(value=create_mixed_img("", new_state, width, height))
|
365 |
+
update_sketch = gr.update(value=None, interactive=False)
|
366 |
+
return new_state, update_sketch, update, update_img
|
367 |
+
|
368 |
+
|
369 |
+
def resize(img, w, h):
|
370 |
+
trs = transforms.Compose(
|
371 |
+
[
|
372 |
+
transforms.ToPILImage(),
|
373 |
+
transforms.Resize(min(h, w)),
|
374 |
+
transforms.CenterCrop((h, w)),
|
375 |
+
]
|
376 |
+
)
|
377 |
+
result = np.array(trs(img), dtype=np.uint8)
|
378 |
+
return result
|
379 |
+
|
380 |
+
|
381 |
+
def switch_canvas(entry, state, width, height):
|
382 |
+
if entry == None:
|
383 |
+
return None, 0.5, False, create_mixed_img("", state, width, height)
|
384 |
+
|
385 |
+
return (
|
386 |
+
gr.update(value=None, interactive=True),
|
387 |
+
gr.update(value=state[entry]["weight"] if entry in state else 0.5),
|
388 |
+
gr.update(value=state[entry]["mask_outsides"] if entry in state else False),
|
389 |
+
create_mixed_img(entry, state, width, height),
|
390 |
+
)
|
391 |
+
|
392 |
+
|
393 |
+
def apply_canvas(selected, draw, state, w, h):
|
394 |
+
if selected in state:
|
395 |
+
w, h = int(w), int(h)
|
396 |
+
state[selected]["map"] = resize(draw, w, h)
|
397 |
+
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
|
398 |
+
|
399 |
+
|
400 |
+
def apply_weight(selected, weight, state):
|
401 |
+
if selected in state:
|
402 |
+
state[selected]["weight"] = weight
|
403 |
+
return state
|
404 |
+
|
405 |
+
|
406 |
+
def apply_option(selected, mask, state):
|
407 |
+
if selected in state:
|
408 |
+
state[selected]["mask_outsides"] = mask
|
409 |
+
return state
|
410 |
+
|
411 |
+
|
412 |
+
# sp2, radio, width, height, global_stats
|
413 |
+
def apply_image(image, selected, w, h, strgength, mask, state):
|
414 |
+
if selected in state:
|
415 |
+
state[selected] = {
|
416 |
+
"map": resize(image, w, h),
|
417 |
+
"weight": strgength,
|
418 |
+
"mask_outsides": mask
|
419 |
+
}
|
420 |
+
|
421 |
+
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
|
422 |
+
|
423 |
+
|
424 |
+
# [ti_state, lora_state, ti_vals, lora_vals, uploads]
|
425 |
+
def add_net(files, ti_state, lora_state):
|
426 |
+
if files is None:
|
427 |
+
return ti_state, "", lora_state, None
|
428 |
+
|
429 |
+
for file in files:
|
430 |
+
item = Path(file.name)
|
431 |
+
stripedname = str(item.stem).strip()
|
432 |
+
if item.suffix == ".pt":
|
433 |
+
state_dict = torch.load(file.name, map_location="cpu")
|
434 |
+
else:
|
435 |
+
state_dict = load_file(file.name, device="cpu")
|
436 |
+
if any("lora" in k for k in state_dict.keys()):
|
437 |
+
lora_state = file.name
|
438 |
+
else:
|
439 |
+
ti_state[stripedname] = file.name
|
440 |
+
|
441 |
+
return (
|
442 |
+
ti_state,
|
443 |
+
lora_state,
|
444 |
+
gr.Text.update(f"{[key for key in ti_state.keys()]}"),
|
445 |
+
gr.Text.update(f"{lora_state}"),
|
446 |
+
gr.Files.update(value=None),
|
447 |
+
)
|
448 |
+
|
449 |
+
|
450 |
+
# [ti_state, lora_state, ti_vals, lora_vals, uploads]
|
451 |
+
def clean_states(ti_state, lora_state):
|
452 |
+
return (
|
453 |
+
dict(),
|
454 |
+
None,
|
455 |
+
gr.Text.update(f""),
|
456 |
+
gr.Text.update(f""),
|
457 |
+
gr.File.update(value=None),
|
458 |
+
)
|
459 |
+
|
460 |
+
|
461 |
+
latent_upscale_modes = {
|
462 |
+
"Latent": {"upscale_method": "bilinear", "upscale_antialias": False},
|
463 |
+
"Latent (antialiased)": {"upscale_method": "bilinear", "upscale_antialias": True},
|
464 |
+
"Latent (bicubic)": {"upscale_method": "bicubic", "upscale_antialias": False},
|
465 |
+
"Latent (bicubic antialiased)": {
|
466 |
+
"upscale_method": "bicubic",
|
467 |
+
"upscale_antialias": True,
|
468 |
+
},
|
469 |
+
"Latent (nearest)": {"upscale_method": "nearest", "upscale_antialias": False},
|
470 |
+
"Latent (nearest-exact)": {
|
471 |
+
"upscale_method": "nearest-exact",
|
472 |
+
"upscale_antialias": False,
|
473 |
+
},
|
474 |
+
}
|
475 |
+
|
476 |
+
css = """
|
477 |
+
.finetuned-diffusion-div div{
|
478 |
+
display:inline-flex;
|
479 |
+
align-items:center;
|
480 |
+
gap:.8rem;
|
481 |
+
font-size:1.75rem;
|
482 |
+
padding-top:2rem;
|
483 |
+
}
|
484 |
+
.finetuned-diffusion-div div h1{
|
485 |
+
font-weight:900;
|
486 |
+
margin-bottom:7px
|
487 |
+
}
|
488 |
+
.finetuned-diffusion-div p{
|
489 |
+
margin-bottom:10px;
|
490 |
+
font-size:94%
|
491 |
+
}
|
492 |
+
.box {
|
493 |
+
float: left;
|
494 |
+
height: 20px;
|
495 |
+
width: 20px;
|
496 |
+
margin-bottom: 15px;
|
497 |
+
border: 1px solid black;
|
498 |
+
clear: both;
|
499 |
+
}
|
500 |
+
a{
|
501 |
+
text-decoration:underline
|
502 |
+
}
|
503 |
+
.tabs{
|
504 |
+
margin-top:0;
|
505 |
+
margin-bottom:0
|
506 |
+
}
|
507 |
+
#gallery{
|
508 |
+
min-height:20rem
|
509 |
+
}
|
510 |
+
.no-border {
|
511 |
+
border: none !important;
|
512 |
+
}
|
513 |
+
"""
|
514 |
+
with gr.Blocks(css=css) as demo:
|
515 |
+
gr.HTML(
|
516 |
+
f"""
|
517 |
+
<div class="finetuned-diffusion-div">
|
518 |
+
<div>
|
519 |
+
<h1>Demo for diffusion models</h1>
|
520 |
+
</div>
|
521 |
+
<p>Hso @ nyanko.sketch2img.gradio</p>
|
522 |
+
</div>
|
523 |
+
"""
|
524 |
+
)
|
525 |
+
global_stats = gr.State(value={})
|
526 |
+
|
527 |
+
with gr.Row():
|
528 |
+
|
529 |
+
with gr.Column(scale=55):
|
530 |
+
model = gr.Dropdown(
|
531 |
+
choices=[k[0] for k in get_model_list()],
|
532 |
+
label="Model",
|
533 |
+
value=base_name,
|
534 |
+
)
|
535 |
+
image_out = gr.Image(height=512)
|
536 |
+
# gallery = gr.Gallery(
|
537 |
+
# label="Generated images", show_label=False, elem_id="gallery"
|
538 |
+
# ).style(grid=[1], height="auto")
|
539 |
+
|
540 |
+
with gr.Column(scale=45):
|
541 |
+
|
542 |
+
with gr.Group():
|
543 |
+
|
544 |
+
with gr.Row():
|
545 |
+
with gr.Column(scale=70):
|
546 |
+
|
547 |
+
prompt = gr.Textbox(
|
548 |
+
label="Prompt",
|
549 |
+
value="loli cat girl, blue eyes, flat chest, solo, long messy silver hair, blue capelet, cat ears, cat tail, upper body",
|
550 |
+
show_label=True,
|
551 |
+
max_lines=4,
|
552 |
+
placeholder="Enter prompt.",
|
553 |
+
)
|
554 |
+
neg_prompt = gr.Textbox(
|
555 |
+
label="Negative Prompt",
|
556 |
+
value="bad quality, low quality, jpeg artifact, cropped",
|
557 |
+
show_label=True,
|
558 |
+
max_lines=4,
|
559 |
+
placeholder="Enter negative prompt.",
|
560 |
+
)
|
561 |
+
|
562 |
+
generate = gr.Button(value="Generate").style(
|
563 |
+
rounded=(False, True, True, False)
|
564 |
+
)
|
565 |
+
|
566 |
+
with gr.Tab("Options"):
|
567 |
+
|
568 |
+
with gr.Group():
|
569 |
+
|
570 |
+
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
571 |
+
with gr.Row():
|
572 |
+
guidance = gr.Slider(
|
573 |
+
label="Guidance scale", value=7.5, maximum=15
|
574 |
+
)
|
575 |
+
steps = gr.Slider(
|
576 |
+
label="Steps", value=25, minimum=2, maximum=50, step=1
|
577 |
+
)
|
578 |
+
|
579 |
+
with gr.Row():
|
580 |
+
width = gr.Slider(
|
581 |
+
label="Width", value=512, minimum=64, maximum=768, step=64
|
582 |
+
)
|
583 |
+
height = gr.Slider(
|
584 |
+
label="Height", value=512, minimum=64, maximum=768, step=64
|
585 |
+
)
|
586 |
+
|
587 |
+
sampler = gr.Dropdown(
|
588 |
+
value="DPM++ 2M Karras",
|
589 |
+
label="Sampler",
|
590 |
+
choices=[s[0] for s in samplers_k_diffusion],
|
591 |
+
)
|
592 |
+
seed = gr.Number(label="Seed (0 = random)", value=0)
|
593 |
+
|
594 |
+
with gr.Tab("Image to image"):
|
595 |
+
with gr.Group():
|
596 |
+
|
597 |
+
inf_image = gr.Image(
|
598 |
+
label="Image", height=256, tool="editor", type="pil"
|
599 |
+
)
|
600 |
+
inf_strength = gr.Slider(
|
601 |
+
label="Transformation strength",
|
602 |
+
minimum=0,
|
603 |
+
maximum=1,
|
604 |
+
step=0.01,
|
605 |
+
value=0.5,
|
606 |
+
)
|
607 |
+
|
608 |
+
def res_cap(g, w, h, x):
|
609 |
+
if g:
|
610 |
+
return f"Enable upscaler: {w}x{h} to {int(w*x)}x{int(h*x)}"
|
611 |
+
else:
|
612 |
+
return "Enable upscaler"
|
613 |
+
|
614 |
+
with gr.Tab("Hires fix"):
|
615 |
+
with gr.Group():
|
616 |
+
|
617 |
+
hr_enabled = gr.Checkbox(label="Enable upscaler", value=False)
|
618 |
+
hr_method = gr.Dropdown(
|
619 |
+
[key for key in latent_upscale_modes.keys()],
|
620 |
+
value="Latent",
|
621 |
+
label="Upscale method",
|
622 |
+
)
|
623 |
+
hr_scale = gr.Slider(
|
624 |
+
label="Upscale factor",
|
625 |
+
minimum=1.0,
|
626 |
+
maximum=1.5,
|
627 |
+
step=0.1,
|
628 |
+
value=1.2,
|
629 |
+
)
|
630 |
+
hr_denoise = gr.Slider(
|
631 |
+
label="Denoising strength",
|
632 |
+
minimum=0.0,
|
633 |
+
maximum=1.0,
|
634 |
+
step=0.1,
|
635 |
+
value=0.8,
|
636 |
+
)
|
637 |
+
|
638 |
+
hr_scale.change(
|
639 |
+
lambda g, x, w, h: gr.Checkbox.update(
|
640 |
+
label=res_cap(g, w, h, x)
|
641 |
+
),
|
642 |
+
inputs=[hr_enabled, hr_scale, width, height],
|
643 |
+
outputs=hr_enabled,
|
644 |
+
queue=False,
|
645 |
+
)
|
646 |
+
hr_enabled.change(
|
647 |
+
lambda g, x, w, h: gr.Checkbox.update(
|
648 |
+
label=res_cap(g, w, h, x)
|
649 |
+
),
|
650 |
+
inputs=[hr_enabled, hr_scale, width, height],
|
651 |
+
outputs=hr_enabled,
|
652 |
+
queue=False,
|
653 |
+
)
|
654 |
+
|
655 |
+
with gr.Tab("Embeddings/Loras"):
|
656 |
+
|
657 |
+
ti_state = gr.State(dict())
|
658 |
+
lora_state = gr.State()
|
659 |
+
|
660 |
+
with gr.Group():
|
661 |
+
with gr.Row():
|
662 |
+
with gr.Column(scale=90):
|
663 |
+
ti_vals = gr.Text(label="Loaded embeddings")
|
664 |
+
|
665 |
+
with gr.Row():
|
666 |
+
with gr.Column(scale=90):
|
667 |
+
lora_vals = gr.Text(label="Loaded loras")
|
668 |
+
|
669 |
+
with gr.Row():
|
670 |
+
|
671 |
+
uploads = gr.Files(label="Upload new embeddings/lora")
|
672 |
+
|
673 |
+
with gr.Column():
|
674 |
+
lora_scale = gr.Slider(
|
675 |
+
label="Lora scale",
|
676 |
+
minimum=0,
|
677 |
+
maximum=2,
|
678 |
+
step=0.01,
|
679 |
+
value=1.0,
|
680 |
+
)
|
681 |
+
btn = gr.Button(value="Upload")
|
682 |
+
btn_del = gr.Button(value="Reset")
|
683 |
+
|
684 |
+
btn.click(
|
685 |
+
add_net,
|
686 |
+
inputs=[uploads, ti_state, lora_state],
|
687 |
+
outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads],
|
688 |
+
queue=False,
|
689 |
+
)
|
690 |
+
btn_del.click(
|
691 |
+
clean_states,
|
692 |
+
inputs=[ti_state, lora_state],
|
693 |
+
outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads],
|
694 |
+
queue=False,
|
695 |
+
)
|
696 |
+
|
697 |
+
# error_output = gr.Markdown()
|
698 |
+
|
699 |
+
gr.HTML(
|
700 |
+
f"""
|
701 |
+
<div class="finetuned-diffusion-div">
|
702 |
+
<div>
|
703 |
+
<h1>Paint with words</h1>
|
704 |
+
</div>
|
705 |
+
<p>
|
706 |
+
Will use the following formula: w = scale * token_weight_martix * log(1 + sigma) * max(qk).
|
707 |
+
</p>
|
708 |
+
</div>
|
709 |
+
"""
|
710 |
+
)
|
711 |
+
|
712 |
+
with gr.Row():
|
713 |
+
|
714 |
+
with gr.Column(scale=55):
|
715 |
+
|
716 |
+
rendered = gr.Image(
|
717 |
+
invert_colors=True,
|
718 |
+
source="canvas",
|
719 |
+
interactive=False,
|
720 |
+
image_mode="RGBA",
|
721 |
+
)
|
722 |
+
|
723 |
+
with gr.Column(scale=45):
|
724 |
+
|
725 |
+
with gr.Group():
|
726 |
+
with gr.Row():
|
727 |
+
with gr.Column(scale=70):
|
728 |
+
g_strength = gr.Slider(
|
729 |
+
label="Weight scaling",
|
730 |
+
minimum=0,
|
731 |
+
maximum=0.8,
|
732 |
+
step=0.01,
|
733 |
+
value=0.4,
|
734 |
+
)
|
735 |
+
|
736 |
+
text = gr.Textbox(
|
737 |
+
lines=2,
|
738 |
+
interactive=True,
|
739 |
+
label="Token to Draw: (Separate by comma)",
|
740 |
+
)
|
741 |
+
|
742 |
+
radio = gr.Radio([], label="Tokens")
|
743 |
+
|
744 |
+
sk_update = gr.Button(value="Update").style(
|
745 |
+
rounded=(False, True, True, False)
|
746 |
+
)
|
747 |
+
|
748 |
+
# g_strength.change(lambda b: gr.update(f"Scaled additional attn: $w = {b} \log (1 + \sigma) \std (Q^T K)$."), inputs=g_strength, outputs=[g_output])
|
749 |
+
|
750 |
+
with gr.Tab("SketchPad"):
|
751 |
+
|
752 |
+
sp = gr.Image(
|
753 |
+
image_mode="L",
|
754 |
+
tool="sketch",
|
755 |
+
source="canvas",
|
756 |
+
interactive=False,
|
757 |
+
)
|
758 |
+
|
759 |
+
mask_outsides = gr.Checkbox(
|
760 |
+
label="Mask other areas",
|
761 |
+
value=False
|
762 |
+
)
|
763 |
+
|
764 |
+
strength = gr.Slider(
|
765 |
+
label="Token strength",
|
766 |
+
minimum=0,
|
767 |
+
maximum=0.8,
|
768 |
+
step=0.01,
|
769 |
+
value=0.5,
|
770 |
+
)
|
771 |
+
|
772 |
+
|
773 |
+
sk_update.click(
|
774 |
+
detect_text,
|
775 |
+
inputs=[text, global_stats, width, height],
|
776 |
+
outputs=[global_stats, sp, radio, rendered],
|
777 |
+
queue=False,
|
778 |
+
)
|
779 |
+
radio.change(
|
780 |
+
switch_canvas,
|
781 |
+
inputs=[radio, global_stats, width, height],
|
782 |
+
outputs=[sp, strength, mask_outsides, rendered],
|
783 |
+
queue=False,
|
784 |
+
)
|
785 |
+
sp.edit(
|
786 |
+
apply_canvas,
|
787 |
+
inputs=[radio, sp, global_stats, width, height],
|
788 |
+
outputs=[global_stats, rendered],
|
789 |
+
queue=False,
|
790 |
+
)
|
791 |
+
strength.change(
|
792 |
+
apply_weight,
|
793 |
+
inputs=[radio, strength, global_stats],
|
794 |
+
outputs=[global_stats],
|
795 |
+
queue=False,
|
796 |
+
)
|
797 |
+
mask_outsides.change(
|
798 |
+
apply_option,
|
799 |
+
inputs=[radio, mask_outsides, global_stats],
|
800 |
+
outputs=[global_stats],
|
801 |
+
queue=False,
|
802 |
+
)
|
803 |
+
|
804 |
+
with gr.Tab("UploadFile"):
|
805 |
+
|
806 |
+
sp2 = gr.Image(
|
807 |
+
image_mode="L",
|
808 |
+
source="upload",
|
809 |
+
shape=(512, 512),
|
810 |
+
)
|
811 |
+
|
812 |
+
mask_outsides2 = gr.Checkbox(
|
813 |
+
label="Mask other areas",
|
814 |
+
value=False,
|
815 |
+
)
|
816 |
+
|
817 |
+
strength2 = gr.Slider(
|
818 |
+
label="Token strength",
|
819 |
+
minimum=0,
|
820 |
+
maximum=0.8,
|
821 |
+
step=0.01,
|
822 |
+
value=0.5,
|
823 |
+
)
|
824 |
+
|
825 |
+
apply_style = gr.Button(value="Apply")
|
826 |
+
apply_style.click(
|
827 |
+
apply_image,
|
828 |
+
inputs=[sp2, radio, width, height, strength2, mask_outsides2, global_stats],
|
829 |
+
outputs=[global_stats, rendered],
|
830 |
+
queue=False,
|
831 |
+
)
|
832 |
+
|
833 |
+
width.change(
|
834 |
+
apply_new_res,
|
835 |
+
inputs=[width, height, global_stats],
|
836 |
+
outputs=[global_stats, rendered],
|
837 |
+
queue=False,
|
838 |
+
)
|
839 |
+
height.change(
|
840 |
+
apply_new_res,
|
841 |
+
inputs=[width, height, global_stats],
|
842 |
+
outputs=[global_stats, rendered],
|
843 |
+
queue=False,
|
844 |
+
)
|
845 |
+
|
846 |
+
# color_stats = gr.State(value={})
|
847 |
+
# text.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered])
|
848 |
+
# sp.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered])
|
849 |
+
|
850 |
+
inputs = [
|
851 |
+
prompt,
|
852 |
+
guidance,
|
853 |
+
steps,
|
854 |
+
width,
|
855 |
+
height,
|
856 |
+
seed,
|
857 |
+
neg_prompt,
|
858 |
+
global_stats,
|
859 |
+
g_strength,
|
860 |
+
inf_image,
|
861 |
+
inf_strength,
|
862 |
+
hr_enabled,
|
863 |
+
hr_method,
|
864 |
+
hr_scale,
|
865 |
+
hr_denoise,
|
866 |
+
sampler,
|
867 |
+
ti_state,
|
868 |
+
model,
|
869 |
+
lora_state,
|
870 |
+
lora_scale,
|
871 |
+
]
|
872 |
+
outputs = [image_out]
|
873 |
+
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
874 |
+
generate.click(inference, inputs=inputs, outputs=outputs)
|
875 |
+
|
876 |
+
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
877 |
+
# demo.launch(share=True)
|
878 |
+
demo.launch(enable_queue=True, server_name="0.0.0.0", server_port=7860)
|
modules/lora.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA network module
|
2 |
+
# reference:
|
3 |
+
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
|
4 |
+
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
|
5 |
+
# https://github.com/bmaltais/kohya_ss/blob/master/networks/lora.py#L48
|
6 |
+
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import modules.safe as _
|
11 |
+
from safetensors.torch import load_file
|
12 |
+
|
13 |
+
|
14 |
+
class LoRAModule(torch.nn.Module):
|
15 |
+
"""
|
16 |
+
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
lora_name,
|
22 |
+
org_module: torch.nn.Module,
|
23 |
+
multiplier=1.0,
|
24 |
+
lora_dim=4,
|
25 |
+
alpha=1,
|
26 |
+
):
|
27 |
+
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
28 |
+
super().__init__()
|
29 |
+
self.lora_name = lora_name
|
30 |
+
self.lora_dim = lora_dim
|
31 |
+
|
32 |
+
if org_module.__class__.__name__ == "Conv2d":
|
33 |
+
in_dim = org_module.in_channels
|
34 |
+
out_dim = org_module.out_channels
|
35 |
+
self.lora_down = torch.nn.Conv2d(in_dim, lora_dim, (1, 1), bias=False)
|
36 |
+
self.lora_up = torch.nn.Conv2d(lora_dim, out_dim, (1, 1), bias=False)
|
37 |
+
else:
|
38 |
+
in_dim = org_module.in_features
|
39 |
+
out_dim = org_module.out_features
|
40 |
+
self.lora_down = torch.nn.Linear(in_dim, lora_dim, bias=False)
|
41 |
+
self.lora_up = torch.nn.Linear(lora_dim, out_dim, bias=False)
|
42 |
+
|
43 |
+
if type(alpha) == torch.Tensor:
|
44 |
+
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
45 |
+
|
46 |
+
alpha = lora_dim if alpha is None or alpha == 0 else alpha
|
47 |
+
self.scale = alpha / self.lora_dim
|
48 |
+
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
|
49 |
+
|
50 |
+
# same as microsoft's
|
51 |
+
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
52 |
+
torch.nn.init.zeros_(self.lora_up.weight)
|
53 |
+
|
54 |
+
self.multiplier = multiplier
|
55 |
+
self.org_module = org_module # remove in applying
|
56 |
+
self.enable = False
|
57 |
+
|
58 |
+
def resize(self, rank, alpha, multiplier):
|
59 |
+
self.alpha = torch.tensor(alpha)
|
60 |
+
self.multiplier = multiplier
|
61 |
+
self.scale = alpha / rank
|
62 |
+
if self.lora_down.__class__.__name__ == "Conv2d":
|
63 |
+
in_dim = self.lora_down.in_channels
|
64 |
+
out_dim = self.lora_up.out_channels
|
65 |
+
self.lora_down = torch.nn.Conv2d(in_dim, rank, (1, 1), bias=False)
|
66 |
+
self.lora_up = torch.nn.Conv2d(rank, out_dim, (1, 1), bias=False)
|
67 |
+
else:
|
68 |
+
in_dim = self.lora_down.in_features
|
69 |
+
out_dim = self.lora_up.out_features
|
70 |
+
self.lora_down = torch.nn.Linear(in_dim, rank, bias=False)
|
71 |
+
self.lora_up = torch.nn.Linear(rank, out_dim, bias=False)
|
72 |
+
|
73 |
+
def apply(self):
|
74 |
+
if hasattr(self, "org_module"):
|
75 |
+
self.org_forward = self.org_module.forward
|
76 |
+
self.org_module.forward = self.forward
|
77 |
+
del self.org_module
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
if self.enable:
|
81 |
+
return (
|
82 |
+
self.org_forward(x)
|
83 |
+
+ self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
84 |
+
)
|
85 |
+
return self.org_forward(x)
|
86 |
+
|
87 |
+
|
88 |
+
class LoRANetwork(torch.nn.Module):
|
89 |
+
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
|
90 |
+
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
91 |
+
LORA_PREFIX_UNET = "lora_unet"
|
92 |
+
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
93 |
+
|
94 |
+
def __init__(self, text_encoder, unet, multiplier=1.0, lora_dim=4, alpha=1) -> None:
|
95 |
+
super().__init__()
|
96 |
+
self.multiplier = multiplier
|
97 |
+
self.lora_dim = lora_dim
|
98 |
+
self.alpha = alpha
|
99 |
+
|
100 |
+
# create module instances
|
101 |
+
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules):
|
102 |
+
loras = []
|
103 |
+
for name, module in root_module.named_modules():
|
104 |
+
if module.__class__.__name__ in target_replace_modules:
|
105 |
+
for child_name, child_module in module.named_modules():
|
106 |
+
if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)):
|
107 |
+
lora_name = prefix + "." + name + "." + child_name
|
108 |
+
lora_name = lora_name.replace(".", "_")
|
109 |
+
lora = LoRAModule(lora_name, child_module, self.multiplier, self.lora_dim, self.alpha,)
|
110 |
+
loras.append(lora)
|
111 |
+
return loras
|
112 |
+
|
113 |
+
if isinstance(text_encoder, list):
|
114 |
+
self.text_encoder_loras = text_encoder
|
115 |
+
else:
|
116 |
+
self.text_encoder_loras = create_modules(LoRANetwork.LORA_PREFIX_TEXT_ENCODER, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
117 |
+
print(f"Create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
118 |
+
|
119 |
+
self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, LoRANetwork.UNET_TARGET_REPLACE_MODULE)
|
120 |
+
print(f"Create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
121 |
+
|
122 |
+
self.weights_sd = None
|
123 |
+
|
124 |
+
# assertion
|
125 |
+
names = set()
|
126 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
127 |
+
assert (lora.lora_name not in names), f"duplicated lora name: {lora.lora_name}"
|
128 |
+
names.add(lora.lora_name)
|
129 |
+
|
130 |
+
lora.apply()
|
131 |
+
self.add_module(lora.lora_name, lora)
|
132 |
+
|
133 |
+
def reset(self):
|
134 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
135 |
+
lora.enable = False
|
136 |
+
|
137 |
+
def load(self, file, scale):
|
138 |
+
|
139 |
+
weights = None
|
140 |
+
if os.path.splitext(file)[1] == ".safetensors":
|
141 |
+
weights = load_file(file)
|
142 |
+
else:
|
143 |
+
weights = torch.load(file, map_location="cpu")
|
144 |
+
|
145 |
+
if not weights:
|
146 |
+
return
|
147 |
+
|
148 |
+
network_alpha = None
|
149 |
+
network_dim = None
|
150 |
+
for key, value in weights.items():
|
151 |
+
if network_alpha is None and "alpha" in key:
|
152 |
+
network_alpha = value
|
153 |
+
if network_dim is None and "lora_down" in key and len(value.size()) == 2:
|
154 |
+
network_dim = value.size()[0]
|
155 |
+
|
156 |
+
if network_alpha is None:
|
157 |
+
network_alpha = network_dim
|
158 |
+
|
159 |
+
weights_has_text_encoder = weights_has_unet = False
|
160 |
+
weights_to_modify = []
|
161 |
+
|
162 |
+
for key in weights.keys():
|
163 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
|
164 |
+
weights_has_text_encoder = True
|
165 |
+
|
166 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_UNET):
|
167 |
+
weights_has_unet = True
|
168 |
+
|
169 |
+
if weights_has_text_encoder:
|
170 |
+
weights_to_modify += self.text_encoder_loras
|
171 |
+
|
172 |
+
if weights_has_unet:
|
173 |
+
weights_to_modify += self.unet_loras
|
174 |
+
|
175 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
176 |
+
lora.resize(network_dim, network_alpha, scale)
|
177 |
+
if lora in weights_to_modify:
|
178 |
+
lora.enable = True
|
179 |
+
|
180 |
+
info = self.load_state_dict(weights, False)
|
181 |
+
if len(info.unexpected_keys) > 0:
|
182 |
+
print(f"Weights are loaded. Unexpected keys={info.unexpected_keys}")
|
183 |
+
|
modules/model.py
ADDED
@@ -0,0 +1,897 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import inspect
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
import re
|
6 |
+
from collections import defaultdict
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
|
9 |
+
import time
|
10 |
+
import k_diffusion
|
11 |
+
import numpy as np
|
12 |
+
import PIL
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from einops import rearrange
|
17 |
+
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser
|
18 |
+
from modules.prompt_parser import FrozenCLIPEmbedderWithCustomWords
|
19 |
+
from torch import einsum
|
20 |
+
from torch.autograd.function import Function
|
21 |
+
|
22 |
+
from diffusers import DiffusionPipeline
|
23 |
+
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
|
24 |
+
from diffusers.utils import logging, randn_tensor
|
25 |
+
|
26 |
+
import modules.safe as _
|
27 |
+
from safetensors.torch import load_file
|
28 |
+
|
29 |
+
xformers_available = False
|
30 |
+
try:
|
31 |
+
import xformers
|
32 |
+
|
33 |
+
xformers_available = True
|
34 |
+
except ImportError:
|
35 |
+
pass
|
36 |
+
|
37 |
+
EPSILON = 1e-6
|
38 |
+
exists = lambda val: val is not None
|
39 |
+
default = lambda val, d: val if exists(val) else d
|
40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
+
|
42 |
+
|
43 |
+
def get_attention_scores(attn, query, key, attention_mask=None):
|
44 |
+
|
45 |
+
if attn.upcast_attention:
|
46 |
+
query = query.float()
|
47 |
+
key = key.float()
|
48 |
+
|
49 |
+
attention_scores = torch.baddbmm(
|
50 |
+
torch.empty(
|
51 |
+
query.shape[0],
|
52 |
+
query.shape[1],
|
53 |
+
key.shape[1],
|
54 |
+
dtype=query.dtype,
|
55 |
+
device=query.device,
|
56 |
+
),
|
57 |
+
query,
|
58 |
+
key.transpose(-1, -2),
|
59 |
+
beta=0,
|
60 |
+
alpha=attn.scale,
|
61 |
+
)
|
62 |
+
|
63 |
+
if attention_mask is not None:
|
64 |
+
attention_scores = attention_scores + attention_mask
|
65 |
+
|
66 |
+
if attn.upcast_softmax:
|
67 |
+
attention_scores = attention_scores.float()
|
68 |
+
|
69 |
+
return attention_scores
|
70 |
+
|
71 |
+
|
72 |
+
class CrossAttnProcessor(nn.Module):
|
73 |
+
def __call__(
|
74 |
+
self,
|
75 |
+
attn,
|
76 |
+
hidden_states,
|
77 |
+
encoder_hidden_states=None,
|
78 |
+
attention_mask=None,
|
79 |
+
):
|
80 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
81 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
82 |
+
|
83 |
+
encoder_states = hidden_states
|
84 |
+
is_xattn = False
|
85 |
+
if encoder_hidden_states is not None:
|
86 |
+
is_xattn = True
|
87 |
+
img_state = encoder_hidden_states["img_state"]
|
88 |
+
encoder_states = encoder_hidden_states["states"]
|
89 |
+
weight_func = encoder_hidden_states["weight_func"]
|
90 |
+
sigma = encoder_hidden_states["sigma"]
|
91 |
+
|
92 |
+
query = attn.to_q(hidden_states)
|
93 |
+
key = attn.to_k(encoder_states)
|
94 |
+
value = attn.to_v(encoder_states)
|
95 |
+
|
96 |
+
query = attn.head_to_batch_dim(query)
|
97 |
+
key = attn.head_to_batch_dim(key)
|
98 |
+
value = attn.head_to_batch_dim(value)
|
99 |
+
|
100 |
+
if is_xattn and isinstance(img_state, dict):
|
101 |
+
# use torch.baddbmm method (slow)
|
102 |
+
attention_scores = get_attention_scores(attn, query, key, attention_mask)
|
103 |
+
w = img_state[sequence_length].to(query.device)
|
104 |
+
cross_attention_weight = weight_func(w, sigma, attention_scores)
|
105 |
+
attention_scores += torch.repeat_interleave(
|
106 |
+
cross_attention_weight, repeats=attn.heads, dim=0
|
107 |
+
)
|
108 |
+
|
109 |
+
# calc probs
|
110 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
111 |
+
attention_probs = attention_probs.to(query.dtype)
|
112 |
+
hidden_states = torch.bmm(attention_probs, value)
|
113 |
+
|
114 |
+
elif xformers_available:
|
115 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
116 |
+
query.contiguous(),
|
117 |
+
key.contiguous(),
|
118 |
+
value.contiguous(),
|
119 |
+
attn_bias=attention_mask,
|
120 |
+
)
|
121 |
+
hidden_states = hidden_states.to(query.dtype)
|
122 |
+
|
123 |
+
else:
|
124 |
+
q_bucket_size = 512
|
125 |
+
k_bucket_size = 1024
|
126 |
+
|
127 |
+
# use flash-attention
|
128 |
+
hidden_states = FlashAttentionFunction.apply(
|
129 |
+
query.contiguous(),
|
130 |
+
key.contiguous(),
|
131 |
+
value.contiguous(),
|
132 |
+
attention_mask,
|
133 |
+
False,
|
134 |
+
q_bucket_size,
|
135 |
+
k_bucket_size,
|
136 |
+
)
|
137 |
+
hidden_states = hidden_states.to(query.dtype)
|
138 |
+
|
139 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
140 |
+
|
141 |
+
# linear proj
|
142 |
+
hidden_states = attn.to_out[0](hidden_states)
|
143 |
+
|
144 |
+
# dropout
|
145 |
+
hidden_states = attn.to_out[1](hidden_states)
|
146 |
+
|
147 |
+
return hidden_states
|
148 |
+
|
149 |
+
class ModelWrapper:
|
150 |
+
def __init__(self, model, alphas_cumprod):
|
151 |
+
self.model = model
|
152 |
+
self.alphas_cumprod = alphas_cumprod
|
153 |
+
|
154 |
+
def apply_model(self, *args, **kwargs):
|
155 |
+
if len(args) == 3:
|
156 |
+
encoder_hidden_states = args[-1]
|
157 |
+
args = args[:2]
|
158 |
+
if kwargs.get("cond", None) is not None:
|
159 |
+
encoder_hidden_states = kwargs.pop("cond")
|
160 |
+
return self.model(
|
161 |
+
*args, encoder_hidden_states=encoder_hidden_states, **kwargs
|
162 |
+
).sample
|
163 |
+
|
164 |
+
|
165 |
+
class StableDiffusionPipeline(DiffusionPipeline):
|
166 |
+
|
167 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
168 |
+
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
vae,
|
172 |
+
text_encoder,
|
173 |
+
tokenizer,
|
174 |
+
unet,
|
175 |
+
scheduler,
|
176 |
+
):
|
177 |
+
super().__init__()
|
178 |
+
|
179 |
+
# get correct sigmas from LMS
|
180 |
+
self.register_modules(
|
181 |
+
vae=vae,
|
182 |
+
text_encoder=text_encoder,
|
183 |
+
tokenizer=tokenizer,
|
184 |
+
unet=unet,
|
185 |
+
scheduler=scheduler,
|
186 |
+
)
|
187 |
+
self.setup_unet(self.unet)
|
188 |
+
self.setup_text_encoder()
|
189 |
+
|
190 |
+
def setup_text_encoder(self, n=1, new_encoder=None):
|
191 |
+
if new_encoder is not None:
|
192 |
+
self.text_encoder = new_encoder
|
193 |
+
|
194 |
+
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder)
|
195 |
+
self.prompt_parser.CLIP_stop_at_last_layers = n
|
196 |
+
|
197 |
+
def setup_unet(self, unet):
|
198 |
+
unet = unet.to(self.device)
|
199 |
+
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
|
200 |
+
if self.scheduler.prediction_type == "v_prediction":
|
201 |
+
self.k_diffusion_model = CompVisVDenoiser(model)
|
202 |
+
else:
|
203 |
+
self.k_diffusion_model = CompVisDenoiser(model)
|
204 |
+
|
205 |
+
def get_scheduler(self, scheduler_type: str):
|
206 |
+
library = importlib.import_module("k_diffusion")
|
207 |
+
sampling = getattr(library, "sampling")
|
208 |
+
return getattr(sampling, scheduler_type)
|
209 |
+
|
210 |
+
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None):
|
211 |
+
uncond, cond = text_ids[0], text_ids[1]
|
212 |
+
|
213 |
+
img_state = []
|
214 |
+
if state is None:
|
215 |
+
return torch.FloatTensor(0)
|
216 |
+
|
217 |
+
for k, v in state.items():
|
218 |
+
if v["map"] is None:
|
219 |
+
continue
|
220 |
+
|
221 |
+
v_input = self.tokenizer(
|
222 |
+
k,
|
223 |
+
max_length=self.tokenizer.model_max_length,
|
224 |
+
truncation=True,
|
225 |
+
add_special_tokens=False,
|
226 |
+
).input_ids
|
227 |
+
|
228 |
+
dotmap = v["map"] < 255
|
229 |
+
out = dotmap.astype(float)
|
230 |
+
if v["mask_outsides"]:
|
231 |
+
out[out==0] = -1
|
232 |
+
|
233 |
+
arr = torch.from_numpy(
|
234 |
+
out * float(v["weight"]) * g_strength
|
235 |
+
)
|
236 |
+
img_state.append((v_input, arr))
|
237 |
+
|
238 |
+
if len(img_state) == 0:
|
239 |
+
return torch.FloatTensor(0)
|
240 |
+
|
241 |
+
w_tensors = dict()
|
242 |
+
cond = cond.tolist()
|
243 |
+
uncond = uncond.tolist()
|
244 |
+
for layer in self.unet.down_blocks:
|
245 |
+
c = int(len(cond))
|
246 |
+
w, h = img_state[0][1].shape
|
247 |
+
w_r, h_r = w // scale_ratio, h // scale_ratio
|
248 |
+
|
249 |
+
ret_cond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
|
250 |
+
ret_uncond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
|
251 |
+
|
252 |
+
for v_as_tokens, img_where_color in img_state:
|
253 |
+
is_in = 0
|
254 |
+
|
255 |
+
ret = (
|
256 |
+
F.interpolate(
|
257 |
+
img_where_color.unsqueeze(0).unsqueeze(1),
|
258 |
+
scale_factor=1 / scale_ratio,
|
259 |
+
mode="bilinear",
|
260 |
+
align_corners=True,
|
261 |
+
)
|
262 |
+
.squeeze()
|
263 |
+
.reshape(-1, 1)
|
264 |
+
.repeat(1, len(v_as_tokens))
|
265 |
+
)
|
266 |
+
|
267 |
+
for idx, tok in enumerate(cond):
|
268 |
+
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
269 |
+
is_in = 1
|
270 |
+
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
|
271 |
+
|
272 |
+
for idx, tok in enumerate(uncond):
|
273 |
+
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
274 |
+
is_in = 1
|
275 |
+
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
|
276 |
+
|
277 |
+
if not is_in == 1:
|
278 |
+
print(f"tokens {v_as_tokens} not found in text")
|
279 |
+
|
280 |
+
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
|
281 |
+
scale_ratio *= 2
|
282 |
+
|
283 |
+
return w_tensors
|
284 |
+
|
285 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
286 |
+
r"""
|
287 |
+
Enable sliced attention computation.
|
288 |
+
|
289 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
290 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
294 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
295 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
296 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
297 |
+
"""
|
298 |
+
if slice_size == "auto":
|
299 |
+
# half the attention head size is usually a good trade-off between
|
300 |
+
# speed and memory
|
301 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
302 |
+
self.unet.set_attention_slice(slice_size)
|
303 |
+
|
304 |
+
def disable_attention_slicing(self):
|
305 |
+
r"""
|
306 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
307 |
+
back to computing attention in one step.
|
308 |
+
"""
|
309 |
+
# set slice_size = `None` to disable `attention slicing`
|
310 |
+
self.enable_attention_slicing(None)
|
311 |
+
|
312 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
313 |
+
r"""
|
314 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
315 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
316 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
317 |
+
"""
|
318 |
+
if is_accelerate_available():
|
319 |
+
from accelerate import cpu_offload
|
320 |
+
else:
|
321 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
322 |
+
|
323 |
+
device = torch.device(f"cuda:{gpu_id}")
|
324 |
+
|
325 |
+
for cpu_offloaded_model in [
|
326 |
+
self.unet,
|
327 |
+
self.text_encoder,
|
328 |
+
self.vae,
|
329 |
+
self.safety_checker,
|
330 |
+
]:
|
331 |
+
if cpu_offloaded_model is not None:
|
332 |
+
cpu_offload(cpu_offloaded_model, device)
|
333 |
+
|
334 |
+
@property
|
335 |
+
def _execution_device(self):
|
336 |
+
r"""
|
337 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
338 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
339 |
+
hooks.
|
340 |
+
"""
|
341 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
342 |
+
return self.device
|
343 |
+
for module in self.unet.modules():
|
344 |
+
if (
|
345 |
+
hasattr(module, "_hf_hook")
|
346 |
+
and hasattr(module._hf_hook, "execution_device")
|
347 |
+
and module._hf_hook.execution_device is not None
|
348 |
+
):
|
349 |
+
return torch.device(module._hf_hook.execution_device)
|
350 |
+
return self.device
|
351 |
+
|
352 |
+
def decode_latents(self, latents):
|
353 |
+
latents = latents.to(self.device, dtype=self.vae.dtype)
|
354 |
+
latents = 1 / 0.18215 * latents
|
355 |
+
image = self.vae.decode(latents).sample
|
356 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
357 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
358 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
359 |
+
return image
|
360 |
+
|
361 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
362 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
363 |
+
raise ValueError(
|
364 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
365 |
+
)
|
366 |
+
|
367 |
+
if height % 8 != 0 or width % 8 != 0:
|
368 |
+
raise ValueError(
|
369 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
370 |
+
)
|
371 |
+
|
372 |
+
if (callback_steps is None) or (
|
373 |
+
callback_steps is not None
|
374 |
+
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
375 |
+
):
|
376 |
+
raise ValueError(
|
377 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
378 |
+
f" {type(callback_steps)}."
|
379 |
+
)
|
380 |
+
|
381 |
+
def prepare_latents(
|
382 |
+
self,
|
383 |
+
batch_size,
|
384 |
+
num_channels_latents,
|
385 |
+
height,
|
386 |
+
width,
|
387 |
+
dtype,
|
388 |
+
device,
|
389 |
+
generator,
|
390 |
+
latents=None,
|
391 |
+
):
|
392 |
+
shape = (batch_size, num_channels_latents, height // 8, width // 8)
|
393 |
+
if latents is None:
|
394 |
+
if device.type == "mps":
|
395 |
+
# randn does not work reproducibly on mps
|
396 |
+
latents = torch.randn(
|
397 |
+
shape, generator=generator, device="cpu", dtype=dtype
|
398 |
+
).to(device)
|
399 |
+
else:
|
400 |
+
latents = torch.randn(
|
401 |
+
shape, generator=generator, device=device, dtype=dtype
|
402 |
+
)
|
403 |
+
else:
|
404 |
+
# if latents.shape != shape:
|
405 |
+
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
406 |
+
latents = latents.to(device)
|
407 |
+
|
408 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
409 |
+
return latents
|
410 |
+
|
411 |
+
def preprocess(self, image):
|
412 |
+
if isinstance(image, torch.Tensor):
|
413 |
+
return image
|
414 |
+
elif isinstance(image, PIL.Image.Image):
|
415 |
+
image = [image]
|
416 |
+
|
417 |
+
if isinstance(image[0], PIL.Image.Image):
|
418 |
+
w, h = image[0].size
|
419 |
+
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8
|
420 |
+
|
421 |
+
image = [
|
422 |
+
np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[
|
423 |
+
None, :
|
424 |
+
]
|
425 |
+
for i in image
|
426 |
+
]
|
427 |
+
image = np.concatenate(image, axis=0)
|
428 |
+
image = np.array(image).astype(np.float32) / 255.0
|
429 |
+
image = image.transpose(0, 3, 1, 2)
|
430 |
+
image = 2.0 * image - 1.0
|
431 |
+
image = torch.from_numpy(image)
|
432 |
+
elif isinstance(image[0], torch.Tensor):
|
433 |
+
image = torch.cat(image, dim=0)
|
434 |
+
return image
|
435 |
+
|
436 |
+
@torch.no_grad()
|
437 |
+
def img2img(
|
438 |
+
self,
|
439 |
+
prompt: Union[str, List[str]],
|
440 |
+
num_inference_steps: int = 50,
|
441 |
+
guidance_scale: float = 7.5,
|
442 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
443 |
+
generator: Optional[torch.Generator] = None,
|
444 |
+
image: Optional[torch.FloatTensor] = None,
|
445 |
+
output_type: Optional[str] = "pil",
|
446 |
+
latents=None,
|
447 |
+
strength=1.0,
|
448 |
+
pww_state=None,
|
449 |
+
pww_attn_weight=1.0,
|
450 |
+
sampler_name="",
|
451 |
+
sampler_opt={},
|
452 |
+
start_time=-1,
|
453 |
+
timeout=180,
|
454 |
+
scale_ratio=8.0,
|
455 |
+
):
|
456 |
+
sampler = self.get_scheduler(sampler_name)
|
457 |
+
if image is not None:
|
458 |
+
image = self.preprocess(image)
|
459 |
+
image = image.to(self.vae.device, dtype=self.vae.dtype)
|
460 |
+
|
461 |
+
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
462 |
+
latents = 0.18215 * init_latents
|
463 |
+
|
464 |
+
# 2. Define call parameters
|
465 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
466 |
+
device = self._execution_device
|
467 |
+
latents = latents.to(device, dtype=self.unet.dtype)
|
468 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
469 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
470 |
+
# corresponds to doing no classifier free guidance.
|
471 |
+
do_classifier_free_guidance = True
|
472 |
+
if guidance_scale <= 1.0:
|
473 |
+
raise ValueError("has to use guidance_scale")
|
474 |
+
|
475 |
+
# 3. Encode input prompt
|
476 |
+
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
477 |
+
text_embeddings = text_embeddings.to(self.unet.dtype)
|
478 |
+
|
479 |
+
init_timestep = (
|
480 |
+
int(num_inference_steps / min(strength, 0.999)) if strength > 0 else 0
|
481 |
+
)
|
482 |
+
sigmas = self.get_sigmas(init_timestep, sampler_opt).to(
|
483 |
+
text_embeddings.device, dtype=text_embeddings.dtype
|
484 |
+
)
|
485 |
+
|
486 |
+
t_start = max(init_timestep - num_inference_steps, 0)
|
487 |
+
sigma_sched = sigmas[t_start:]
|
488 |
+
|
489 |
+
noise = randn_tensor(
|
490 |
+
latents.shape,
|
491 |
+
generator=generator,
|
492 |
+
device=device,
|
493 |
+
dtype=text_embeddings.dtype,
|
494 |
+
)
|
495 |
+
latents = latents.to(device)
|
496 |
+
latents = latents + noise * sigma_sched[0]
|
497 |
+
|
498 |
+
# 5. Prepare latent variables
|
499 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
500 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
501 |
+
latents.device
|
502 |
+
)
|
503 |
+
|
504 |
+
img_state = self.encode_sketchs(
|
505 |
+
pww_state,
|
506 |
+
g_strength=pww_attn_weight,
|
507 |
+
text_ids=text_ids,
|
508 |
+
)
|
509 |
+
|
510 |
+
def model_fn(x, sigma):
|
511 |
+
|
512 |
+
if start_time > 0 and timeout > 0:
|
513 |
+
assert (time.time() - start_time) < timeout, "inference process timed out"
|
514 |
+
|
515 |
+
latent_model_input = torch.cat([x] * 2)
|
516 |
+
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
517 |
+
encoder_state = {
|
518 |
+
"img_state": img_state,
|
519 |
+
"states": text_embeddings,
|
520 |
+
"sigma": sigma[0],
|
521 |
+
"weight_func": weight_func,
|
522 |
+
}
|
523 |
+
|
524 |
+
noise_pred = self.k_diffusion_model(
|
525 |
+
latent_model_input, sigma, cond=encoder_state
|
526 |
+
)
|
527 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
528 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
529 |
+
noise_pred_text - noise_pred_uncond
|
530 |
+
)
|
531 |
+
return noise_pred
|
532 |
+
|
533 |
+
sampler_args = self.get_sampler_extra_args_i2i(sigma_sched, sampler)
|
534 |
+
latents = sampler(model_fn, latents, **sampler_args)
|
535 |
+
|
536 |
+
# 8. Post-processing
|
537 |
+
image = self.decode_latents(latents)
|
538 |
+
|
539 |
+
# 10. Convert to PIL
|
540 |
+
if output_type == "pil":
|
541 |
+
image = self.numpy_to_pil(image)
|
542 |
+
|
543 |
+
return (image,)
|
544 |
+
|
545 |
+
def get_sigmas(self, steps, params):
|
546 |
+
discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False)
|
547 |
+
steps += 1 if discard_next_to_last_sigma else 0
|
548 |
+
|
549 |
+
if params.get("scheduler", None) == "karras":
|
550 |
+
sigma_min, sigma_max = (
|
551 |
+
self.k_diffusion_model.sigmas[0].item(),
|
552 |
+
self.k_diffusion_model.sigmas[-1].item(),
|
553 |
+
)
|
554 |
+
sigmas = k_diffusion.sampling.get_sigmas_karras(
|
555 |
+
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
|
556 |
+
)
|
557 |
+
else:
|
558 |
+
sigmas = self.k_diffusion_model.get_sigmas(steps)
|
559 |
+
|
560 |
+
if discard_next_to_last_sigma:
|
561 |
+
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
562 |
+
|
563 |
+
return sigmas
|
564 |
+
|
565 |
+
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
|
566 |
+
def get_sampler_extra_args_t2i(self, sigmas, eta, steps, func):
|
567 |
+
extra_params_kwargs = {}
|
568 |
+
|
569 |
+
if "eta" in inspect.signature(func).parameters:
|
570 |
+
extra_params_kwargs["eta"] = eta
|
571 |
+
|
572 |
+
if "sigma_min" in inspect.signature(func).parameters:
|
573 |
+
extra_params_kwargs["sigma_min"] = sigmas[0].item()
|
574 |
+
extra_params_kwargs["sigma_max"] = sigmas[-1].item()
|
575 |
+
|
576 |
+
if "n" in inspect.signature(func).parameters:
|
577 |
+
extra_params_kwargs["n"] = steps
|
578 |
+
else:
|
579 |
+
extra_params_kwargs["sigmas"] = sigmas
|
580 |
+
|
581 |
+
return extra_params_kwargs
|
582 |
+
|
583 |
+
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
|
584 |
+
def get_sampler_extra_args_i2i(self, sigmas, func):
|
585 |
+
extra_params_kwargs = {}
|
586 |
+
|
587 |
+
if "sigma_min" in inspect.signature(func).parameters:
|
588 |
+
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
589 |
+
extra_params_kwargs["sigma_min"] = sigmas[-2]
|
590 |
+
|
591 |
+
if "sigma_max" in inspect.signature(func).parameters:
|
592 |
+
extra_params_kwargs["sigma_max"] = sigmas[0]
|
593 |
+
|
594 |
+
if "n" in inspect.signature(func).parameters:
|
595 |
+
extra_params_kwargs["n"] = len(sigmas) - 1
|
596 |
+
|
597 |
+
if "sigma_sched" in inspect.signature(func).parameters:
|
598 |
+
extra_params_kwargs["sigma_sched"] = sigmas
|
599 |
+
|
600 |
+
if "sigmas" in inspect.signature(func).parameters:
|
601 |
+
extra_params_kwargs["sigmas"] = sigmas
|
602 |
+
|
603 |
+
return extra_params_kwargs
|
604 |
+
|
605 |
+
@torch.no_grad()
|
606 |
+
def txt2img(
|
607 |
+
self,
|
608 |
+
prompt: Union[str, List[str]],
|
609 |
+
height: int = 512,
|
610 |
+
width: int = 512,
|
611 |
+
num_inference_steps: int = 50,
|
612 |
+
guidance_scale: float = 7.5,
|
613 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
614 |
+
eta: float = 0.0,
|
615 |
+
generator: Optional[torch.Generator] = None,
|
616 |
+
latents: Optional[torch.FloatTensor] = None,
|
617 |
+
output_type: Optional[str] = "pil",
|
618 |
+
callback_steps: Optional[int] = 1,
|
619 |
+
upscale=False,
|
620 |
+
upscale_x: float = 2.0,
|
621 |
+
upscale_method: str = "bicubic",
|
622 |
+
upscale_antialias: bool = False,
|
623 |
+
upscale_denoising_strength: int = 0.7,
|
624 |
+
pww_state=None,
|
625 |
+
pww_attn_weight=1.0,
|
626 |
+
sampler_name="",
|
627 |
+
sampler_opt={},
|
628 |
+
start_time=-1,
|
629 |
+
timeout=180,
|
630 |
+
):
|
631 |
+
sampler = self.get_scheduler(sampler_name)
|
632 |
+
# 1. Check inputs. Raise error if not correct
|
633 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
634 |
+
|
635 |
+
# 2. Define call parameters
|
636 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
637 |
+
device = self._execution_device
|
638 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
639 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
640 |
+
# corresponds to doing no classifier free guidance.
|
641 |
+
do_classifier_free_guidance = True
|
642 |
+
if guidance_scale <= 1.0:
|
643 |
+
raise ValueError("has to use guidance_scale")
|
644 |
+
|
645 |
+
# 3. Encode input prompt
|
646 |
+
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
647 |
+
text_embeddings = text_embeddings.to(self.unet.dtype)
|
648 |
+
|
649 |
+
# 4. Prepare timesteps
|
650 |
+
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
|
651 |
+
text_embeddings.device, dtype=text_embeddings.dtype
|
652 |
+
)
|
653 |
+
|
654 |
+
# 5. Prepare latent variables
|
655 |
+
num_channels_latents = self.unet.in_channels
|
656 |
+
latents = self.prepare_latents(
|
657 |
+
batch_size,
|
658 |
+
num_channels_latents,
|
659 |
+
height,
|
660 |
+
width,
|
661 |
+
text_embeddings.dtype,
|
662 |
+
device,
|
663 |
+
generator,
|
664 |
+
latents,
|
665 |
+
)
|
666 |
+
latents = latents * sigmas[0]
|
667 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
668 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
669 |
+
latents.device
|
670 |
+
)
|
671 |
+
|
672 |
+
img_state = self.encode_sketchs(
|
673 |
+
pww_state,
|
674 |
+
g_strength=pww_attn_weight,
|
675 |
+
text_ids=text_ids,
|
676 |
+
)
|
677 |
+
|
678 |
+
def model_fn(x, sigma):
|
679 |
+
|
680 |
+
if start_time > 0 and timeout > 0:
|
681 |
+
assert (time.time() - start_time) < timeout, "inference process timed out"
|
682 |
+
|
683 |
+
latent_model_input = torch.cat([x] * 2)
|
684 |
+
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
685 |
+
encoder_state = {
|
686 |
+
"img_state": img_state,
|
687 |
+
"states": text_embeddings,
|
688 |
+
"sigma": sigma[0],
|
689 |
+
"weight_func": weight_func,
|
690 |
+
}
|
691 |
+
|
692 |
+
noise_pred = self.k_diffusion_model(
|
693 |
+
latent_model_input, sigma, cond=encoder_state
|
694 |
+
)
|
695 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
696 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
697 |
+
noise_pred_text - noise_pred_uncond
|
698 |
+
)
|
699 |
+
return noise_pred
|
700 |
+
|
701 |
+
extra_args = self.get_sampler_extra_args_t2i(
|
702 |
+
sigmas, eta, num_inference_steps, sampler
|
703 |
+
)
|
704 |
+
latents = sampler(model_fn, latents, **extra_args)
|
705 |
+
|
706 |
+
if upscale:
|
707 |
+
target_height = height * upscale_x
|
708 |
+
target_width = width * upscale_x
|
709 |
+
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
710 |
+
latents = torch.nn.functional.interpolate(
|
711 |
+
latents,
|
712 |
+
size=(
|
713 |
+
int(target_height // vae_scale_factor),
|
714 |
+
int(target_width // vae_scale_factor),
|
715 |
+
),
|
716 |
+
mode=upscale_method,
|
717 |
+
antialias=upscale_antialias,
|
718 |
+
)
|
719 |
+
return self.img2img(
|
720 |
+
prompt=prompt,
|
721 |
+
num_inference_steps=num_inference_steps,
|
722 |
+
guidance_scale=guidance_scale,
|
723 |
+
negative_prompt=negative_prompt,
|
724 |
+
generator=generator,
|
725 |
+
latents=latents,
|
726 |
+
strength=upscale_denoising_strength,
|
727 |
+
sampler_name=sampler_name,
|
728 |
+
sampler_opt=sampler_opt,
|
729 |
+
pww_state=None,
|
730 |
+
pww_attn_weight=pww_attn_weight / 2,
|
731 |
+
)
|
732 |
+
|
733 |
+
# 8. Post-processing
|
734 |
+
image = self.decode_latents(latents)
|
735 |
+
|
736 |
+
# 10. Convert to PIL
|
737 |
+
if output_type == "pil":
|
738 |
+
image = self.numpy_to_pil(image)
|
739 |
+
|
740 |
+
return (image,)
|
741 |
+
|
742 |
+
|
743 |
+
class FlashAttentionFunction(Function):
|
744 |
+
@staticmethod
|
745 |
+
@torch.no_grad()
|
746 |
+
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
747 |
+
"""Algorithm 2 in the paper"""
|
748 |
+
|
749 |
+
device = q.device
|
750 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
751 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
752 |
+
|
753 |
+
o = torch.zeros_like(q)
|
754 |
+
all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device)
|
755 |
+
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device)
|
756 |
+
|
757 |
+
scale = q.shape[-1] ** -0.5
|
758 |
+
|
759 |
+
if not exists(mask):
|
760 |
+
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
761 |
+
else:
|
762 |
+
mask = rearrange(mask, "b n -> b 1 1 n")
|
763 |
+
mask = mask.split(q_bucket_size, dim=-1)
|
764 |
+
|
765 |
+
row_splits = zip(
|
766 |
+
q.split(q_bucket_size, dim=-2),
|
767 |
+
o.split(q_bucket_size, dim=-2),
|
768 |
+
mask,
|
769 |
+
all_row_sums.split(q_bucket_size, dim=-2),
|
770 |
+
all_row_maxes.split(q_bucket_size, dim=-2),
|
771 |
+
)
|
772 |
+
|
773 |
+
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
774 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
775 |
+
|
776 |
+
col_splits = zip(
|
777 |
+
k.split(k_bucket_size, dim=-2),
|
778 |
+
v.split(k_bucket_size, dim=-2),
|
779 |
+
)
|
780 |
+
|
781 |
+
for k_ind, (kc, vc) in enumerate(col_splits):
|
782 |
+
k_start_index = k_ind * k_bucket_size
|
783 |
+
|
784 |
+
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
785 |
+
|
786 |
+
if exists(row_mask):
|
787 |
+
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
788 |
+
|
789 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
790 |
+
causal_mask = torch.ones(
|
791 |
+
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
|
792 |
+
).triu(q_start_index - k_start_index + 1)
|
793 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
794 |
+
|
795 |
+
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
796 |
+
attn_weights -= block_row_maxes
|
797 |
+
exp_weights = torch.exp(attn_weights)
|
798 |
+
|
799 |
+
if exists(row_mask):
|
800 |
+
exp_weights.masked_fill_(~row_mask, 0.0)
|
801 |
+
|
802 |
+
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(
|
803 |
+
min=EPSILON
|
804 |
+
)
|
805 |
+
|
806 |
+
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
807 |
+
|
808 |
+
exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc)
|
809 |
+
|
810 |
+
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
811 |
+
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
812 |
+
|
813 |
+
new_row_sums = (
|
814 |
+
exp_row_max_diff * row_sums
|
815 |
+
+ exp_block_row_max_diff * block_row_sums
|
816 |
+
)
|
817 |
+
|
818 |
+
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
|
819 |
+
(exp_block_row_max_diff / new_row_sums) * exp_values
|
820 |
+
)
|
821 |
+
|
822 |
+
row_maxes.copy_(new_row_maxes)
|
823 |
+
row_sums.copy_(new_row_sums)
|
824 |
+
|
825 |
+
lse = all_row_sums.log() + all_row_maxes
|
826 |
+
|
827 |
+
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
828 |
+
ctx.save_for_backward(q, k, v, o, lse)
|
829 |
+
|
830 |
+
return o
|
831 |
+
|
832 |
+
@staticmethod
|
833 |
+
@torch.no_grad()
|
834 |
+
def backward(ctx, do):
|
835 |
+
"""Algorithm 4 in the paper"""
|
836 |
+
|
837 |
+
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
838 |
+
q, k, v, o, lse = ctx.saved_tensors
|
839 |
+
|
840 |
+
device = q.device
|
841 |
+
|
842 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
843 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
844 |
+
|
845 |
+
dq = torch.zeros_like(q)
|
846 |
+
dk = torch.zeros_like(k)
|
847 |
+
dv = torch.zeros_like(v)
|
848 |
+
|
849 |
+
row_splits = zip(
|
850 |
+
q.split(q_bucket_size, dim=-2),
|
851 |
+
o.split(q_bucket_size, dim=-2),
|
852 |
+
do.split(q_bucket_size, dim=-2),
|
853 |
+
mask,
|
854 |
+
lse.split(q_bucket_size, dim=-2),
|
855 |
+
dq.split(q_bucket_size, dim=-2),
|
856 |
+
)
|
857 |
+
|
858 |
+
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
|
859 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
860 |
+
|
861 |
+
col_splits = zip(
|
862 |
+
k.split(k_bucket_size, dim=-2),
|
863 |
+
v.split(k_bucket_size, dim=-2),
|
864 |
+
dk.split(k_bucket_size, dim=-2),
|
865 |
+
dv.split(k_bucket_size, dim=-2),
|
866 |
+
)
|
867 |
+
|
868 |
+
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
869 |
+
k_start_index = k_ind * k_bucket_size
|
870 |
+
|
871 |
+
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
872 |
+
|
873 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
874 |
+
causal_mask = torch.ones(
|
875 |
+
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
|
876 |
+
).triu(q_start_index - k_start_index + 1)
|
877 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
878 |
+
|
879 |
+
p = torch.exp(attn_weights - lsec)
|
880 |
+
|
881 |
+
if exists(row_mask):
|
882 |
+
p.masked_fill_(~row_mask, 0.0)
|
883 |
+
|
884 |
+
dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc)
|
885 |
+
dp = einsum("... i d, ... j d -> ... i j", doc, vc)
|
886 |
+
|
887 |
+
D = (doc * oc).sum(dim=-1, keepdims=True)
|
888 |
+
ds = p * scale * (dp - D)
|
889 |
+
|
890 |
+
dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc)
|
891 |
+
dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc)
|
892 |
+
|
893 |
+
dqc.add_(dq_chunk)
|
894 |
+
dkc.add_(dk_chunk)
|
895 |
+
dvc.add_(dv_chunk)
|
896 |
+
|
897 |
+
return dq, dk, dv, None, None, None, None
|
modules/prompt_parser.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Code from https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/8e2aeee4a127b295bfc880800e4a312e0f049b85, modified.
|
8 |
+
|
9 |
+
class PromptChunk:
|
10 |
+
"""
|
11 |
+
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
|
12 |
+
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
|
13 |
+
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
|
14 |
+
so just 75 tokens from prompt.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
self.tokens = []
|
19 |
+
self.multipliers = []
|
20 |
+
self.fixes = []
|
21 |
+
|
22 |
+
|
23 |
+
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
24 |
+
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
|
25 |
+
have unlimited prompt length and assign weights to tokens in prompt.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, text_encoder, enable_emphasis=True):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.device = lambda: text_encoder.device
|
32 |
+
self.enable_emphasis = enable_emphasis
|
33 |
+
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
|
34 |
+
depending on model."""
|
35 |
+
|
36 |
+
self.chunk_length = 75
|
37 |
+
|
38 |
+
def empty_chunk(self):
|
39 |
+
"""creates an empty PromptChunk and returns it"""
|
40 |
+
|
41 |
+
chunk = PromptChunk()
|
42 |
+
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
|
43 |
+
chunk.multipliers = [1.0] * (self.chunk_length + 2)
|
44 |
+
return chunk
|
45 |
+
|
46 |
+
def get_target_prompt_token_count(self, token_count):
|
47 |
+
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""
|
48 |
+
|
49 |
+
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
|
50 |
+
|
51 |
+
def tokenize_line(self, line):
|
52 |
+
"""
|
53 |
+
this transforms a single prompt into a list of PromptChunk objects - as many as needed to
|
54 |
+
represent the prompt.
|
55 |
+
Returns the list and the total number of tokens in the prompt.
|
56 |
+
"""
|
57 |
+
|
58 |
+
if self.enable_emphasis:
|
59 |
+
parsed = parse_prompt_attention(line)
|
60 |
+
else:
|
61 |
+
parsed = [[line, 1.0]]
|
62 |
+
|
63 |
+
tokenized = self.tokenize([text for text, _ in parsed])
|
64 |
+
|
65 |
+
chunks = []
|
66 |
+
chunk = PromptChunk()
|
67 |
+
token_count = 0
|
68 |
+
last_comma = -1
|
69 |
+
|
70 |
+
def next_chunk(is_last=False):
|
71 |
+
"""puts current chunk into the list of results and produces the next one - empty;
|
72 |
+
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
|
73 |
+
nonlocal token_count
|
74 |
+
nonlocal last_comma
|
75 |
+
nonlocal chunk
|
76 |
+
|
77 |
+
if is_last:
|
78 |
+
token_count += len(chunk.tokens)
|
79 |
+
else:
|
80 |
+
token_count += self.chunk_length
|
81 |
+
|
82 |
+
to_add = self.chunk_length - len(chunk.tokens)
|
83 |
+
if to_add > 0:
|
84 |
+
chunk.tokens += [self.id_end] * to_add
|
85 |
+
chunk.multipliers += [1.0] * to_add
|
86 |
+
|
87 |
+
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
|
88 |
+
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
|
89 |
+
|
90 |
+
last_comma = -1
|
91 |
+
chunks.append(chunk)
|
92 |
+
chunk = PromptChunk()
|
93 |
+
|
94 |
+
comma_padding_backtrack = 20 # default value in https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/shared.py#L410
|
95 |
+
for tokens, (text, weight) in zip(tokenized, parsed):
|
96 |
+
if text == "BREAK" and weight == -1:
|
97 |
+
next_chunk()
|
98 |
+
continue
|
99 |
+
|
100 |
+
position = 0
|
101 |
+
while position < len(tokens):
|
102 |
+
token = tokens[position]
|
103 |
+
|
104 |
+
if token == self.comma_token:
|
105 |
+
last_comma = len(chunk.tokens)
|
106 |
+
|
107 |
+
# this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
|
108 |
+
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
|
109 |
+
elif (
|
110 |
+
comma_padding_backtrack != 0
|
111 |
+
and len(chunk.tokens) == self.chunk_length
|
112 |
+
and last_comma != -1
|
113 |
+
and len(chunk.tokens) - last_comma <= comma_padding_backtrack
|
114 |
+
):
|
115 |
+
break_location = last_comma + 1
|
116 |
+
|
117 |
+
reloc_tokens = chunk.tokens[break_location:]
|
118 |
+
reloc_mults = chunk.multipliers[break_location:]
|
119 |
+
|
120 |
+
chunk.tokens = chunk.tokens[:break_location]
|
121 |
+
chunk.multipliers = chunk.multipliers[:break_location]
|
122 |
+
|
123 |
+
next_chunk()
|
124 |
+
chunk.tokens = reloc_tokens
|
125 |
+
chunk.multipliers = reloc_mults
|
126 |
+
|
127 |
+
if len(chunk.tokens) == self.chunk_length:
|
128 |
+
next_chunk()
|
129 |
+
|
130 |
+
chunk.tokens.append(token)
|
131 |
+
chunk.multipliers.append(weight)
|
132 |
+
position += 1
|
133 |
+
|
134 |
+
if len(chunk.tokens) > 0 or len(chunks) == 0:
|
135 |
+
next_chunk(is_last=True)
|
136 |
+
|
137 |
+
return chunks, token_count
|
138 |
+
|
139 |
+
def process_texts(self, texts):
|
140 |
+
"""
|
141 |
+
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
|
142 |
+
length, in tokens, of all texts.
|
143 |
+
"""
|
144 |
+
|
145 |
+
token_count = 0
|
146 |
+
|
147 |
+
cache = {}
|
148 |
+
batch_chunks = []
|
149 |
+
for line in texts:
|
150 |
+
if line in cache:
|
151 |
+
chunks = cache[line]
|
152 |
+
else:
|
153 |
+
chunks, current_token_count = self.tokenize_line(line)
|
154 |
+
token_count = max(current_token_count, token_count)
|
155 |
+
|
156 |
+
cache[line] = chunks
|
157 |
+
|
158 |
+
batch_chunks.append(chunks)
|
159 |
+
|
160 |
+
return batch_chunks, token_count
|
161 |
+
|
162 |
+
def forward(self, texts):
|
163 |
+
"""
|
164 |
+
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
|
165 |
+
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
|
166 |
+
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024.
|
167 |
+
An example shape returned by this function can be: (2, 77, 768).
|
168 |
+
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
|
169 |
+
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
|
170 |
+
"""
|
171 |
+
|
172 |
+
batch_chunks, token_count = self.process_texts(texts)
|
173 |
+
chunk_count = max([len(x) for x in batch_chunks])
|
174 |
+
|
175 |
+
zs = []
|
176 |
+
ts = []
|
177 |
+
for i in range(chunk_count):
|
178 |
+
batch_chunk = [
|
179 |
+
chunks[i] if i < len(chunks) else self.empty_chunk()
|
180 |
+
for chunks in batch_chunks
|
181 |
+
]
|
182 |
+
|
183 |
+
tokens = [x.tokens for x in batch_chunk]
|
184 |
+
multipliers = [x.multipliers for x in batch_chunk]
|
185 |
+
# self.embeddings.fixes = [x.fixes for x in batch_chunk]
|
186 |
+
|
187 |
+
# for fixes in self.embeddings.fixes:
|
188 |
+
# for position, embedding in fixes:
|
189 |
+
# used_embeddings[embedding.name] = embedding
|
190 |
+
|
191 |
+
z = self.process_tokens(tokens, multipliers)
|
192 |
+
zs.append(z)
|
193 |
+
ts.append(tokens)
|
194 |
+
|
195 |
+
return np.hstack(ts), torch.hstack(zs)
|
196 |
+
|
197 |
+
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
198 |
+
"""
|
199 |
+
sends one single prompt chunk to be encoded by transformers neural network.
|
200 |
+
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
|
201 |
+
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
|
202 |
+
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
|
203 |
+
corresponds to one token.
|
204 |
+
"""
|
205 |
+
tokens = torch.asarray(remade_batch_tokens).to(self.device())
|
206 |
+
|
207 |
+
# this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
|
208 |
+
if self.id_end != self.id_pad:
|
209 |
+
for batch_pos in range(len(remade_batch_tokens)):
|
210 |
+
index = remade_batch_tokens[batch_pos].index(self.id_end)
|
211 |
+
tokens[batch_pos, index + 1 : tokens.shape[1]] = self.id_pad
|
212 |
+
|
213 |
+
z = self.encode_with_transformers(tokens)
|
214 |
+
|
215 |
+
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
216 |
+
batch_multipliers = torch.asarray(batch_multipliers).to(self.device())
|
217 |
+
original_mean = z.mean()
|
218 |
+
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
219 |
+
new_mean = z.mean()
|
220 |
+
z = z * (original_mean / new_mean)
|
221 |
+
|
222 |
+
return z
|
223 |
+
|
224 |
+
|
225 |
+
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
226 |
+
def __init__(self, tokenizer, text_encoder):
|
227 |
+
super().__init__(text_encoder)
|
228 |
+
self.tokenizer = tokenizer
|
229 |
+
self.text_encoder = text_encoder
|
230 |
+
|
231 |
+
vocab = self.tokenizer.get_vocab()
|
232 |
+
|
233 |
+
self.comma_token = vocab.get(",</w>", None)
|
234 |
+
|
235 |
+
self.token_mults = {}
|
236 |
+
tokens_with_parens = [
|
237 |
+
(k, v)
|
238 |
+
for k, v in vocab.items()
|
239 |
+
if "(" in k or ")" in k or "[" in k or "]" in k
|
240 |
+
]
|
241 |
+
for text, ident in tokens_with_parens:
|
242 |
+
mult = 1.0
|
243 |
+
for c in text:
|
244 |
+
if c == "[":
|
245 |
+
mult /= 1.1
|
246 |
+
if c == "]":
|
247 |
+
mult *= 1.1
|
248 |
+
if c == "(":
|
249 |
+
mult *= 1.1
|
250 |
+
if c == ")":
|
251 |
+
mult /= 1.1
|
252 |
+
|
253 |
+
if mult != 1.0:
|
254 |
+
self.token_mults[ident] = mult
|
255 |
+
|
256 |
+
self.id_start = self.tokenizer.bos_token_id
|
257 |
+
self.id_end = self.tokenizer.eos_token_id
|
258 |
+
self.id_pad = self.id_end
|
259 |
+
|
260 |
+
def tokenize(self, texts):
|
261 |
+
tokenized = self.tokenizer(
|
262 |
+
texts, truncation=False, add_special_tokens=False
|
263 |
+
)["input_ids"]
|
264 |
+
|
265 |
+
return tokenized
|
266 |
+
|
267 |
+
def encode_with_transformers(self, tokens):
|
268 |
+
CLIP_stop_at_last_layers = 1
|
269 |
+
tokens = tokens.to(self.text_encoder.device)
|
270 |
+
outputs = self.text_encoder(tokens, output_hidden_states=True)
|
271 |
+
|
272 |
+
if CLIP_stop_at_last_layers > 1:
|
273 |
+
z = outputs.hidden_states[-CLIP_stop_at_last_layers]
|
274 |
+
z = self.text_encoder.text_model.final_layer_norm(z)
|
275 |
+
else:
|
276 |
+
z = outputs.last_hidden_state
|
277 |
+
|
278 |
+
return z
|
279 |
+
|
280 |
+
|
281 |
+
re_attention = re.compile(
|
282 |
+
r"""
|
283 |
+
\\\(|
|
284 |
+
\\\)|
|
285 |
+
\\\[|
|
286 |
+
\\]|
|
287 |
+
\\\\|
|
288 |
+
\\|
|
289 |
+
\(|
|
290 |
+
\[|
|
291 |
+
:([+-]?[.\d]+)\)|
|
292 |
+
\)|
|
293 |
+
]|
|
294 |
+
[^\\()\[\]:]+|
|
295 |
+
:
|
296 |
+
""",
|
297 |
+
re.X,
|
298 |
+
)
|
299 |
+
|
300 |
+
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
|
301 |
+
|
302 |
+
|
303 |
+
def parse_prompt_attention(text):
|
304 |
+
"""
|
305 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
306 |
+
Accepted tokens are:
|
307 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
308 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
309 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
310 |
+
\( - literal character '('
|
311 |
+
\[ - literal character '['
|
312 |
+
\) - literal character ')'
|
313 |
+
\] - literal character ']'
|
314 |
+
\\ - literal character '\'
|
315 |
+
anything else - just text
|
316 |
+
|
317 |
+
>>> parse_prompt_attention('normal text')
|
318 |
+
[['normal text', 1.0]]
|
319 |
+
>>> parse_prompt_attention('an (important) word')
|
320 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
321 |
+
>>> parse_prompt_attention('(unbalanced')
|
322 |
+
[['unbalanced', 1.1]]
|
323 |
+
>>> parse_prompt_attention('\(literal\]')
|
324 |
+
[['(literal]', 1.0]]
|
325 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
326 |
+
[['unnecessaryparens', 1.1]]
|
327 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
328 |
+
[['a ', 1.0],
|
329 |
+
['house', 1.5730000000000004],
|
330 |
+
[' ', 1.1],
|
331 |
+
['on', 1.0],
|
332 |
+
[' a ', 1.1],
|
333 |
+
['hill', 0.55],
|
334 |
+
[', sun, ', 1.1],
|
335 |
+
['sky', 1.4641000000000006],
|
336 |
+
['.', 1.1]]
|
337 |
+
"""
|
338 |
+
|
339 |
+
res = []
|
340 |
+
round_brackets = []
|
341 |
+
square_brackets = []
|
342 |
+
|
343 |
+
round_bracket_multiplier = 1.1
|
344 |
+
square_bracket_multiplier = 1 / 1.1
|
345 |
+
|
346 |
+
def multiply_range(start_position, multiplier):
|
347 |
+
for p in range(start_position, len(res)):
|
348 |
+
res[p][1] *= multiplier
|
349 |
+
|
350 |
+
for m in re_attention.finditer(text):
|
351 |
+
text = m.group(0)
|
352 |
+
weight = m.group(1)
|
353 |
+
|
354 |
+
if text.startswith("\\"):
|
355 |
+
res.append([text[1:], 1.0])
|
356 |
+
elif text == "(":
|
357 |
+
round_brackets.append(len(res))
|
358 |
+
elif text == "[":
|
359 |
+
square_brackets.append(len(res))
|
360 |
+
elif weight is not None and len(round_brackets) > 0:
|
361 |
+
multiply_range(round_brackets.pop(), float(weight))
|
362 |
+
elif text == ")" and len(round_brackets) > 0:
|
363 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
364 |
+
elif text == "]" and len(square_brackets) > 0:
|
365 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
366 |
+
else:
|
367 |
+
parts = re.split(re_break, text)
|
368 |
+
for i, part in enumerate(parts):
|
369 |
+
if i > 0:
|
370 |
+
res.append(["BREAK", -1])
|
371 |
+
res.append([part, 1.0])
|
372 |
+
|
373 |
+
for pos in round_brackets:
|
374 |
+
multiply_range(pos, round_bracket_multiplier)
|
375 |
+
|
376 |
+
for pos in square_brackets:
|
377 |
+
multiply_range(pos, square_bracket_multiplier)
|
378 |
+
|
379 |
+
if len(res) == 0:
|
380 |
+
res = [["", 1.0]]
|
381 |
+
|
382 |
+
# merge runs of identical weights
|
383 |
+
i = 0
|
384 |
+
while i + 1 < len(res):
|
385 |
+
if res[i][1] == res[i + 1][1]:
|
386 |
+
res[i][0] += res[i + 1][0]
|
387 |
+
res.pop(i + 1)
|
388 |
+
else:
|
389 |
+
i += 1
|
390 |
+
|
391 |
+
return res
|
modules/safe.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this code is adapted from the script contributed by anon from /h/
|
2 |
+
# modified, from https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/safe.py
|
3 |
+
|
4 |
+
import io
|
5 |
+
import pickle
|
6 |
+
import collections
|
7 |
+
import sys
|
8 |
+
import traceback
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import numpy
|
12 |
+
import _codecs
|
13 |
+
import zipfile
|
14 |
+
import re
|
15 |
+
|
16 |
+
|
17 |
+
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
|
18 |
+
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
|
19 |
+
|
20 |
+
|
21 |
+
def encode(*args):
|
22 |
+
out = _codecs.encode(*args)
|
23 |
+
return out
|
24 |
+
|
25 |
+
|
26 |
+
class RestrictedUnpickler(pickle.Unpickler):
|
27 |
+
extra_handler = None
|
28 |
+
|
29 |
+
def persistent_load(self, saved_id):
|
30 |
+
assert saved_id[0] == 'storage'
|
31 |
+
return TypedStorage()
|
32 |
+
|
33 |
+
def find_class(self, module, name):
|
34 |
+
if self.extra_handler is not None:
|
35 |
+
res = self.extra_handler(module, name)
|
36 |
+
if res is not None:
|
37 |
+
return res
|
38 |
+
|
39 |
+
if module == 'collections' and name == 'OrderedDict':
|
40 |
+
return getattr(collections, name)
|
41 |
+
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
|
42 |
+
return getattr(torch._utils, name)
|
43 |
+
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
|
44 |
+
return getattr(torch, name)
|
45 |
+
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
|
46 |
+
return getattr(torch.nn.modules.container, name)
|
47 |
+
if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']:
|
48 |
+
return getattr(numpy.core.multiarray, name)
|
49 |
+
if module == 'numpy' and name in ['dtype', 'ndarray']:
|
50 |
+
return getattr(numpy, name)
|
51 |
+
if module == '_codecs' and name == 'encode':
|
52 |
+
return encode
|
53 |
+
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
|
54 |
+
import pytorch_lightning.callbacks
|
55 |
+
return pytorch_lightning.callbacks.model_checkpoint
|
56 |
+
if module == "pytorch_lightning.callbacks.model_checkpoint" and name == 'ModelCheckpoint':
|
57 |
+
import pytorch_lightning.callbacks.model_checkpoint
|
58 |
+
return pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
|
59 |
+
if module == "__builtin__" and name == 'set':
|
60 |
+
return set
|
61 |
+
|
62 |
+
# Forbid everything else.
|
63 |
+
raise Exception(f"global '{module}/{name}' is forbidden")
|
64 |
+
|
65 |
+
|
66 |
+
# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/<number>'
|
67 |
+
allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
|
68 |
+
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
|
69 |
+
|
70 |
+
def check_zip_filenames(filename, names):
|
71 |
+
for name in names:
|
72 |
+
if allowed_zip_names_re.match(name):
|
73 |
+
continue
|
74 |
+
|
75 |
+
raise Exception(f"bad file inside {filename}: {name}")
|
76 |
+
|
77 |
+
|
78 |
+
def check_pt(filename, extra_handler):
|
79 |
+
try:
|
80 |
+
|
81 |
+
# new pytorch format is a zip file
|
82 |
+
with zipfile.ZipFile(filename) as z:
|
83 |
+
check_zip_filenames(filename, z.namelist())
|
84 |
+
|
85 |
+
# find filename of data.pkl in zip file: '<directory name>/data.pkl'
|
86 |
+
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
|
87 |
+
if len(data_pkl_filenames) == 0:
|
88 |
+
raise Exception(f"data.pkl not found in {filename}")
|
89 |
+
if len(data_pkl_filenames) > 1:
|
90 |
+
raise Exception(f"Multiple data.pkl found in {filename}")
|
91 |
+
with z.open(data_pkl_filenames[0]) as file:
|
92 |
+
unpickler = RestrictedUnpickler(file)
|
93 |
+
unpickler.extra_handler = extra_handler
|
94 |
+
unpickler.load()
|
95 |
+
|
96 |
+
except zipfile.BadZipfile:
|
97 |
+
|
98 |
+
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
|
99 |
+
with open(filename, "rb") as file:
|
100 |
+
unpickler = RestrictedUnpickler(file)
|
101 |
+
unpickler.extra_handler = extra_handler
|
102 |
+
for i in range(5):
|
103 |
+
unpickler.load()
|
104 |
+
|
105 |
+
|
106 |
+
def load(filename, *args, **kwargs):
|
107 |
+
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
|
108 |
+
|
109 |
+
|
110 |
+
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
|
111 |
+
"""
|
112 |
+
this function is intended to be used by extensions that want to load models with
|
113 |
+
some extra classes in them that the usual unpickler would find suspicious.
|
114 |
+
|
115 |
+
Use the extra_handler argument to specify a function that takes module and field name as text,
|
116 |
+
and returns that field's value:
|
117 |
+
|
118 |
+
```python
|
119 |
+
def extra(module, name):
|
120 |
+
if module == 'collections' and name == 'OrderedDict':
|
121 |
+
return collections.OrderedDict
|
122 |
+
|
123 |
+
return None
|
124 |
+
|
125 |
+
safe.load_with_extra('model.pt', extra_handler=extra)
|
126 |
+
```
|
127 |
+
|
128 |
+
The alternative to this is just to use safe.unsafe_torch_load('model.pt'), which as the name implies is
|
129 |
+
definitely unsafe.
|
130 |
+
"""
|
131 |
+
|
132 |
+
try:
|
133 |
+
check_pt(filename, extra_handler)
|
134 |
+
|
135 |
+
except pickle.UnpicklingError:
|
136 |
+
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
137 |
+
print(traceback.format_exc(), file=sys.stderr)
|
138 |
+
print("The file is most likely corrupted.", file=sys.stderr)
|
139 |
+
return None
|
140 |
+
|
141 |
+
except Exception:
|
142 |
+
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
143 |
+
print(traceback.format_exc(), file=sys.stderr)
|
144 |
+
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
145 |
+
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
|
146 |
+
return None
|
147 |
+
|
148 |
+
return unsafe_torch_load(filename, *args, **kwargs)
|
149 |
+
|
150 |
+
|
151 |
+
class Extra:
|
152 |
+
"""
|
153 |
+
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
|
154 |
+
(because it's not your code making the torch.load call). The intended use is like this:
|
155 |
+
|
156 |
+
```
|
157 |
+
import torch
|
158 |
+
from modules import safe
|
159 |
+
|
160 |
+
def handler(module, name):
|
161 |
+
if module == 'torch' and name in ['float64', 'float16']:
|
162 |
+
return getattr(torch, name)
|
163 |
+
|
164 |
+
return None
|
165 |
+
|
166 |
+
with safe.Extra(handler):
|
167 |
+
x = torch.load('model.pt')
|
168 |
+
```
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, handler):
|
172 |
+
self.handler = handler
|
173 |
+
|
174 |
+
def __enter__(self):
|
175 |
+
global global_extra_handler
|
176 |
+
|
177 |
+
assert global_extra_handler is None, 'already inside an Extra() block'
|
178 |
+
global_extra_handler = self.handler
|
179 |
+
|
180 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
181 |
+
global global_extra_handler
|
182 |
+
|
183 |
+
global_extra_handler = None
|
184 |
+
|
185 |
+
|
186 |
+
unsafe_torch_load = torch.load
|
187 |
+
torch.load = load
|
188 |
+
global_extra_handler = None
|