OpenSLU / common /tokenizer.py
LightChen2333's picture
Upload 78 files
223340a
import json
import os
from collections import Counter
from collections import OrderedDict
from typing import List
import torch
from ordered_set import OrderedSet
from transformers import AutoTokenizer
from common.utils import download, unzip_file
def get_tokenizer(tokenizer_name:str):
"""auto get tokenizer
Args:
tokenizer_name (str): support "word_tokenizer" and other pretrained tokenizer in hugging face.
Returns:
Any: Tokenizer Object
"""
if tokenizer_name == "word_tokenizer":
return WordTokenizer(tokenizer_name)
else:
return AutoTokenizer.from_pretrained(tokenizer_name)
def get_tokenizer_class(tokenizer_name:str):
"""auto get tokenizer class
Args:
tokenizer_name (str): support "word_tokenizer" and other pretrained tokenizer in hugging face.
Returns:
Any: Tokenizer Class
"""
if tokenizer_name == "word_tokenizer":
return WordTokenizer
else:
return AutoTokenizer.from_pretrained
BATCH_STATE = 1
INSTANCE_STATE = 2
class WordTokenizer(object):
def __init__(self, name):
self.__name = name
self.index2instance = OrderedSet()
self.instance2index = OrderedDict()
# Counter Object record the frequency
# of element occurs in raw text.
self.counter = Counter()
self.__sign_pad = "[PAD]"
self.add_instance(self.__sign_pad)
self.__sign_unk = "[UNK]"
self.add_instance(self.__sign_unk)
@property
def padding_side(self):
return "right"
@property
def all_special_ids(self):
return [self.unk_token_id, self.pad_token_id]
@property
def name_or_path(self):
return self.__name
@property
def vocab_size(self):
return len(self.instance2index)
@property
def pad_token_id(self):
return self.instance2index[self.__sign_pad]
@property
def unk_token_id(self):
return self.instance2index[self.__sign_unk]
def add_instance(self, instance):
""" Add instances to alphabet.
1, We support any iterative data structure which
contains elements of str type.
2, We will count added instances that will influence
the serialization of unknown instance.
Args:
instance: is given instance or a list of it.
"""
if isinstance(instance, (list, tuple)):
for element in instance:
self.add_instance(element)
return
# We only support elements of str type.
assert isinstance(instance, str)
# count the frequency of instances.
# self.counter[instance] += 1
if instance not in self.index2instance:
self.instance2index[instance] = len(self.index2instance)
self.index2instance.append(instance)
def __call__(self, instance,
return_tensors="pt",
is_split_into_words=True,
padding=True,
add_special_tokens=False,
truncation=True,
max_length=512,
**config):
if isinstance(instance, (list, tuple)) and isinstance(instance[0], (str)) and is_split_into_words:
res = self.get_index(instance)
state = INSTANCE_STATE
elif isinstance(instance, str) and not is_split_into_words:
res = self.get_index(instance.split(" "))
state = INSTANCE_STATE
elif not is_split_into_words and isinstance(instance, (list, tuple)):
res = [self.get_index(ins.split(" ")) for ins in instance]
state = BATCH_STATE
else:
res = [self.get_index(ins) for ins in instance]
state = BATCH_STATE
res = [r[:max_length] if len(r) >= max_length else r for r in res]
pad_id = self.get_index(self.__sign_pad)
if padding and state == BATCH_STATE:
max_len = max([len(x) for x in instance])
for i in range(len(res)):
res[i] = res[i] + [pad_id] * (max_len - len(res[i]))
if return_tensors == "pt":
input_ids = torch.Tensor(res).long()
attention_mask = (input_ids != pad_id).long()
elif state == BATCH_STATE:
input_ids = res
attention_mask = [1 if r != pad_id else 0 for batch in res for r in batch]
else:
input_ids = res
attention_mask = [1 if r != pad_id else 0 for r in res]
return TokenizedData(input_ids, token_type_ids=attention_mask, attention_mask=attention_mask)
def get_index(self, instance):
""" Serialize given instance and return.
For unknown words, the return index of alphabet
depends on variable self.__use_unk:
1, If True, then return the index of "<UNK>";
2, If False, then return the index of the
element that hold max frequency in training data.
Args:
instance (Any): is given instance or a list of it.
Return:
Any: the serialization of query instance.
"""
if isinstance(instance, (list, tuple)):
return [self.get_index(elem) for elem in instance]
assert isinstance(instance, str)
try:
return self.instance2index[instance]
except KeyError:
return self.instance2index[self.__sign_unk]
def decode(self, index):
""" Get corresponding instance of query index.
if index is invalid, then throws exception.
Args:
index (int): is query index, possibly iterable.
Returns:
is corresponding instance.
"""
if isinstance(index, list):
return [self.decode(elem) for elem in index]
if isinstance(index, torch.Tensor):
index = index.tolist()
return self.decode(index)
return self.index2instance[index]
def decode_batch(self, index, **kargs):
""" Get corresponding instance of query index.
if index is invalid, then throws exception.
Args:
index (int): is query index, possibly iterable.
Returns:
is corresponding instance.
"""
return self.decode(index)
def save(self, path):
""" Save the content of alphabet to files.
There are two kinds of saved files:
1, The first is a list file, elements are
sorted by the frequency of occurrence.
2, The second is a dictionary file, elements
are sorted by it serialized index.
Args:
path (str): is the path to save object.
"""
with open(path, 'w', encoding="utf8") as fw:
fw.write(json.dumps({"name": self.__name, "token_map": self.instance2index}))
@staticmethod
def from_file(path):
with open(path, 'r', encoding="utf8") as fw:
obj = json.load(fw)
tokenizer = WordTokenizer(obj["name"])
tokenizer.instance2index = OrderedDict(obj["token_map"])
# tokenizer.counter = len(tokenizer.instance2index)
tokenizer.index2instance = OrderedSet(tokenizer.instance2index.keys())
return tokenizer
def __len__(self):
return len(self.index2instance)
def __str__(self):
return 'Alphabet {} contains about {} words: \n\t{}'.format(self.name_or_path, len(self), self.index2instance)
def convert_tokens_to_ids(self, tokens):
"""convert token sequence to intput ids sequence
Args:
tokens (Any): token sequence
Returns:
Any: intput ids sequence
"""
try:
if isinstance(tokens, (list, tuple)):
return [self.instance2index[x] for x in tokens]
return self.instance2index[tokens]
except KeyError:
return self.instance2index[self.__sign_unk]
class TokenizedData():
"""tokenized output data with input_ids, token_type_ids, attention_mask
"""
def __init__(self, input_ids, token_type_ids, attention_mask):
self.input_ids = input_ids
self.token_type_ids = token_type_ids
self.attention_mask = attention_mask
def word_ids(self, index: int) -> List[int or None]:
""" get word id list
Args:
index (int): word index in sequence
Returns:
List[int or None]: word id list
"""
return [j if self.attention_mask[index][j] != 0 else None for j, x in enumerate(self.input_ids[index])]
def word_to_tokens(self, index, word_id, **kwargs):
"""map word and tokens
Args:
index (int): unused
word_id (int): word index in sequence
"""
return (word_id, word_id + 1)
def to(self, device):
"""set device
Args:
device (str): support ["cpu", "cuda"]
"""
self.input_ids = self.input_ids.to(device)
self.token_type_ids = self.token_type_ids.to(device)
self.attention_mask = self.attention_mask.to(device)
return self
def load_embedding(tokenizer: WordTokenizer, glove_name:str):
""" load embedding from standford server or local cache.
Args:
tokenizer (WordTokenizer): non-pretrained tokenizer
glove_name (str): _description_
Returns:
Any: word embedding
"""
save_path = "save/" + glove_name + ".zip"
if not os.path.exists(save_path):
download("http://downloads.cs.stanford.edu/nlp/data/glove.6B.zip#" + glove_name, save_path)
unzip_file(save_path, "save/" + glove_name)
dim = int(glove_name.split(".")[-2][:-1])
embedding_list = torch.rand((tokenizer.vocab_size, dim))
embedding_list[tokenizer.pad_token_id] = torch.zeros((1, dim))
with open("save/" + glove_name + "/" + glove_name, "r", encoding="utf8") as f:
for line in f.readlines():
datas = line.split(" ")
word = datas[0]
embedding = torch.Tensor([float(datas[i + 1]) for i in range(len(datas) - 1)])
tokenized = tokenizer.convert_tokens_to_ids(word)
if isinstance(tokenized, int) and tokenized != tokenizer.unk_token_id:
embedding_list[tokenized] = embedding
return embedding_list