OpenSLU / model /decoder /interaction /agif_interaction.py
LightChen2333's picture
Upload 34 files
37b9e99
raw
history blame
5.39 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from model.decoder.interaction.base_interaction import BaseInteraction
class GraphAttentionLayer(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, concat=True):
super(GraphAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
def forward(self, input, adj):
h = torch.matmul(input, self.W)
B, N = h.size()[0], h.size()[1]
a_input = torch.cat([h.repeat(1, 1, N).view(B, N * N, -1), h.repeat(1, N, 1)], dim=2).view(B, N, -1,
2 * self.out_features)
e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3))
zero_vec = -9e15 * torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=2)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, h)
if self.concat:
return F.elu(h_prime)
else:
return h_prime
class GAT(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads, nlayers=2):
"""Dense version of GAT."""
super(GAT, self).__init__()
self.dropout = dropout
self.nlayers = nlayers
self.nheads = nheads
self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in
range(nheads)]
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
if self.nlayers > 2:
for i in range(self.nlayers - 2):
for j in range(self.nheads):
self.add_module('attention_{}_{}'.format(i + 1, j),
GraphAttentionLayer(nhid * nheads, nhid, dropout=dropout, alpha=alpha, concat=True))
self.out_att = GraphAttentionLayer(nhid * nheads, nclass, dropout=dropout, alpha=alpha, concat=False)
def forward(self, x, adj):
x = F.dropout(x, self.dropout, training=self.training)
input = x
x = torch.cat([att(x, adj) for att in self.attentions], dim=2)
if self.nlayers > 2:
for i in range(self.nlayers - 2):
temp = []
x = F.dropout(x, self.dropout, training=self.training)
cur_input = x
for j in range(self.nheads):
temp.append(self.__getattr__('attention_{}_{}'.format(i + 1, j))(x, adj))
x = torch.cat(temp, dim=2) + cur_input
x = F.dropout(x, self.dropout, training=self.training)
x = F.elu(self.out_att(x, adj))
return x + input
def normalize_adj(mx):
"""
Row-normalize matrix D^{-1}A
torch.diag_embed: https://github.com/pytorch/pytorch/pull/12447
"""
mx = mx.float()
rowsum = mx.sum(2)
r_inv = torch.pow(rowsum, -1)
r_inv[torch.isinf(r_inv)] = 0.
r_mat_inv = torch.diag_embed(r_inv, 0)
mx = r_mat_inv.matmul(mx)
return mx
class AGIFInteraction(BaseInteraction):
def __init__(self, **config):
super().__init__(**config)
self.intent_embedding = nn.Parameter(
torch.FloatTensor(self.config["intent_label_num"], self.config["intent_embedding_dim"])) # 191, 32
nn.init.normal_(self.intent_embedding.data)
self.adj = None
self.graph = GAT(
config["output_dim"],
config["hidden_dim"],
config["output_dim"],
config["dropout_rate"],
config["alpha"],
config["num_heads"],
config["num_layers"])
def generate_adj_gat(self, index, batch, intent_label_num):
intent_idx_ = [[torch.tensor(0)] for i in range(batch)]
for item in index:
intent_idx_[item[0]].append(item[1] + 1)
intent_idx = intent_idx_
self.adj = torch.cat([torch.eye(intent_label_num + 1).unsqueeze(0) for i in range(batch)])
for i in range(batch):
for j in intent_idx[i]:
self.adj[i, j, intent_idx[i]] = 1.
if self.config["row_normalized"]:
self.adj = normalize_adj(self.adj)
self.adj = self.adj.to(self.intent_embedding.device)
def forward(self, encode_hidden, **interaction_args):
if self.adj is None or interaction_args["sent_id"] == 0:
self.generate_adj_gat(interaction_args["intent_index"], interaction_args["batch_size"], interaction_args["intent_label_num"])
lstm_out = torch.cat((encode_hidden,
self.intent_embedding.unsqueeze(0).repeat(encode_hidden.shape[0], 1, 1)), dim=1)
return self.graph(lstm_out, self.adj[interaction_args["sent_id"]])