Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from model.decoder.interaction.base_interaction import BaseInteraction | |
class GraphAttentionLayer(nn.Module): | |
""" | |
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 | |
""" | |
def __init__(self, in_features, out_features, dropout, alpha, concat=True): | |
super(GraphAttentionLayer, self).__init__() | |
self.dropout = dropout | |
self.in_features = in_features | |
self.out_features = out_features | |
self.alpha = alpha | |
self.concat = concat | |
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) | |
nn.init.xavier_uniform_(self.W.data, gain=1.414) | |
self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) | |
nn.init.xavier_uniform_(self.a.data, gain=1.414) | |
self.leakyrelu = nn.LeakyReLU(self.alpha) | |
def forward(self, input, adj): | |
h = torch.matmul(input, self.W) | |
B, N = h.size()[0], h.size()[1] | |
a_input = torch.cat([h.repeat(1, 1, N).view(B, N * N, -1), h.repeat(1, N, 1)], dim=2).view(B, N, -1, | |
2 * self.out_features) | |
e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3)) | |
zero_vec = -9e15 * torch.ones_like(e) | |
attention = torch.where(adj > 0, e, zero_vec) | |
attention = F.softmax(attention, dim=2) | |
attention = F.dropout(attention, self.dropout, training=self.training) | |
h_prime = torch.matmul(attention, h) | |
if self.concat: | |
return F.elu(h_prime) | |
else: | |
return h_prime | |
class GAT(nn.Module): | |
def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads, nlayers=2): | |
"""Dense version of GAT.""" | |
super(GAT, self).__init__() | |
self.dropout = dropout | |
self.nlayers = nlayers | |
self.nheads = nheads | |
self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in | |
range(nheads)] | |
for i, attention in enumerate(self.attentions): | |
self.add_module('attention_{}'.format(i), attention) | |
if self.nlayers > 2: | |
for i in range(self.nlayers - 2): | |
for j in range(self.nheads): | |
self.add_module('attention_{}_{}'.format(i + 1, j), | |
GraphAttentionLayer(nhid * nheads, nhid, dropout=dropout, alpha=alpha, concat=True)) | |
self.out_att = GraphAttentionLayer(nhid * nheads, nclass, dropout=dropout, alpha=alpha, concat=False) | |
def forward(self, x, adj): | |
x = F.dropout(x, self.dropout, training=self.training) | |
input = x | |
x = torch.cat([att(x, adj) for att in self.attentions], dim=2) | |
if self.nlayers > 2: | |
for i in range(self.nlayers - 2): | |
temp = [] | |
x = F.dropout(x, self.dropout, training=self.training) | |
cur_input = x | |
for j in range(self.nheads): | |
temp.append(self.__getattr__('attention_{}_{}'.format(i + 1, j))(x, adj)) | |
x = torch.cat(temp, dim=2) + cur_input | |
x = F.dropout(x, self.dropout, training=self.training) | |
x = F.elu(self.out_att(x, adj)) | |
return x + input | |
def normalize_adj(mx): | |
""" | |
Row-normalize matrix D^{-1}A | |
torch.diag_embed: https://github.com/pytorch/pytorch/pull/12447 | |
""" | |
mx = mx.float() | |
rowsum = mx.sum(2) | |
r_inv = torch.pow(rowsum, -1) | |
r_inv[torch.isinf(r_inv)] = 0. | |
r_mat_inv = torch.diag_embed(r_inv, 0) | |
mx = r_mat_inv.matmul(mx) | |
return mx | |
class AGIFInteraction(BaseInteraction): | |
def __init__(self, **config): | |
super().__init__(**config) | |
self.intent_embedding = nn.Parameter( | |
torch.FloatTensor(self.config["intent_label_num"], self.config["intent_embedding_dim"])) # 191, 32 | |
nn.init.normal_(self.intent_embedding.data) | |
self.adj = None | |
self.graph = GAT( | |
config["output_dim"], | |
config["hidden_dim"], | |
config["output_dim"], | |
config["dropout_rate"], | |
config["alpha"], | |
config["num_heads"], | |
config["num_layers"]) | |
def generate_adj_gat(self, index, batch, intent_label_num): | |
intent_idx_ = [[torch.tensor(0)] for i in range(batch)] | |
for item in index: | |
intent_idx_[item[0]].append(item[1] + 1) | |
intent_idx = intent_idx_ | |
self.adj = torch.cat([torch.eye(intent_label_num + 1).unsqueeze(0) for i in range(batch)]) | |
for i in range(batch): | |
for j in intent_idx[i]: | |
self.adj[i, j, intent_idx[i]] = 1. | |
if self.config["row_normalized"]: | |
self.adj = normalize_adj(self.adj) | |
self.adj = self.adj.to(self.intent_embedding.device) | |
def forward(self, encode_hidden, **interaction_args): | |
if self.adj is None or interaction_args["sent_id"] == 0: | |
self.generate_adj_gat(interaction_args["intent_index"], interaction_args["batch_size"], interaction_args["intent_label_num"]) | |
lstm_out = torch.cat((encode_hidden, | |
self.intent_embedding.unsqueeze(0).repeat(encode_hidden.shape[0], 1, 1)), dim=1) | |
return self.graph(lstm_out, self.adj[interaction_args["sent_id"]]) | |