File size: 8,740 Bytes
37b9e99
 
 
 
223340a
37b9e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223340a
37b9e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
'''
Author: Qiguang Chen
Date: 2023-01-11 10:39:26
LastEditors: Qiguang Chen
LastEditTime: 2023-02-17 21:08:19
Description: non-pretrained encoder model

'''
import math

import einops
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

from common.utils import HiddenData, InputData
from model.encoder.base_encoder import BaseEncoder

class NonPretrainedEncoder(BaseEncoder):
    """
    Encoder structure based on bidirectional LSTM and self-attention.
    """

    def __init__(self, **config):
        """ init non-pretrained encoder
        
        Args:
            config (dict):
                embedding (dict):
                    dropout_rate        (float): dropout rate.
                    load_embedding_name (str): None if not use pretrained embedding or embedding name like "glove.6B.300d.txt".
                    embedding_matrix    (Tensor, Optional): embedding matrix tensor. Enabled if load_embedding_name is not None. 
                    vocab_size          (str, Optional): vocabulary size. Enabled if load_embedding_name is None.
                lstm (dict):
                    output_dim    (int): lstm output dim.
                    bidirectional (bool): if use BiLSTM or LSTM.
                    layer_num     (int): number of layers.
                    dropout_rate  (float): dropout rate.
                attention (dict, Optional):
                    dropout_rate (float): dropout rate.
                    hidden_dim   (int): attention hidden dim.
                    output_dim   (int): attention output dim.
                unflat_attention (dict, optional): Enabled if attention is not None.
                    dropout_rate (float): dropout rate.
        """
        super(NonPretrainedEncoder, self).__init__()
        self.config = config
        # Embedding Initialization
        embed_config = config["embedding"]
        self.__embedding_dim = embed_config["embedding_dim"]
        if embed_config.get("load_embedding_name") and embed_config.get("embedding_matrix"):
            self.__embedding_layer = nn.Embedding.from_pretrained(embed_config["embedding_matrix"], padding_idx=0)
        else:
            self.__embedding_layer = nn.Embedding(
                embed_config["vocab_size"], self.__embedding_dim
            )
        self.__embedding_dropout_layer = nn.Dropout(embed_config["dropout_rate"])

        # LSTM Initialization
        lstm_config = config["lstm"]
        self.__hidden_size = lstm_config["output_dim"]
        self.__lstm_layer = nn.LSTM(
            input_size=self.__embedding_dim,
            hidden_size=lstm_config["output_dim"] // 2,
            batch_first=True,
            bidirectional=lstm_config["bidirectional"],
            dropout=lstm_config["dropout_rate"],
            num_layers=lstm_config["layer_num"]
        )
        if self.config.get("attention"):
            # Attention Initialization
            att_config = config["attention"]
            self.__attention_dropout_layer = nn.Dropout(att_config["dropout_rate"])
            self.__attention_layer = QKVAttention(
                self.__embedding_dim, self.__embedding_dim, self.__embedding_dim,
                att_config["hidden_dim"], att_config["output_dim"], att_config["dropout_rate"]
            )
            if self.config.get("unflat_attention"):
                unflat_att_config = config["unflat_attention"]
                self.__sentattention = UnflatSelfAttention(
                    lstm_config["output_dim"] + att_config["output_dim"],
                    unflat_att_config["dropout_rate"]
                )

    def forward(self, inputs: InputData):
        """ Forward process for Non-Pretrained Encoder.

        Args:
            inputs: padded input ids, masks.
        Returns:
            encoded hidden vectors.
        """

        # LSTM Encoder
        # Padded_text should be instance of LongTensor.
        embedded_text = self.__embedding_layer(inputs.input_ids)
        dropout_text = self.__embedding_dropout_layer(embedded_text)
        seq_lens = inputs.attention_mask.sum(-1).detach().cpu()
        # Pack and Pad process for input of variable length.
        packed_text = pack_padded_sequence(dropout_text, seq_lens, batch_first=True, enforce_sorted=False)
        lstm_hiddens, (h_last, c_last) = self.__lstm_layer(packed_text)
        padded_hiddens, _ = pad_packed_sequence(lstm_hiddens, batch_first=True)

        if self.config.get("attention"):
            # Attention Encoder
            dropout_text = self.__attention_dropout_layer(embedded_text)
            attention_hiddens = self.__attention_layer(
                dropout_text, dropout_text, dropout_text, mask=inputs.attention_mask
            )

            # Attention + LSTM
            hiddens = torch.cat([attention_hiddens, padded_hiddens], dim=-1)
            hidden = HiddenData(None, hiddens)
            if self.config.get("return_with_input"):
                hidden.add_input(inputs)
            if self.config.get("return_sentence_level_hidden"):
                if self.config.get("unflat_attention"):
                    sentence = self.__sentattention(hiddens, seq_lens)
                else:
                    sentence = hiddens[:, 0, :]
                hidden.update_intent_hidden_state(sentence)
        else:
            sentence_hidden = None
            if self.config.get("return_sentence_level_hidden"):
                sentence_hidden = torch.cat((h_last[-1], h_last[-1], c_last[-1], c_last[-2]), dim=-1)
            hidden = HiddenData(sentence_hidden, padded_hiddens)
            if self.config.get("return_with_input"):
                hidden.add_input(inputs)

        return hidden


class QKVAttention(nn.Module):
    """
    Attention mechanism based on Query-Key-Value architecture. And
    especially, when query == key == value, it's self-attention.
    """

    def __init__(self, query_dim, key_dim, value_dim, hidden_dim, output_dim, dropout_rate):
        super(QKVAttention, self).__init__()

        # Record hyper-parameters.
        self.__query_dim = query_dim
        self.__key_dim = key_dim
        self.__value_dim = value_dim
        self.__hidden_dim = hidden_dim
        self.__output_dim = output_dim
        self.__dropout_rate = dropout_rate

        # Declare network structures.
        self.__query_layer = nn.Linear(self.__query_dim, self.__hidden_dim)
        self.__key_layer = nn.Linear(self.__key_dim, self.__hidden_dim)
        self.__value_layer = nn.Linear(self.__value_dim, self.__output_dim)
        self.__dropout_layer = nn.Dropout(p=self.__dropout_rate)

    def forward(self, input_query, input_key, input_value, mask=None):
        """ The forward propagation of attention.

        Here we require the first dimension of input key
        and value are equal.

        Args:
            input_query: is query tensor, (n, d_q)
            input_key:  is key tensor, (m, d_k)
            input_value:  is value tensor, (m, d_v)
        
        Returns:
            attention based tensor, (n, d_h)
        """

        # Linear transform to fine-tune dimension.
        linear_query = self.__query_layer(input_query)
        linear_key = self.__key_layer(input_key)
        linear_value = self.__value_layer(input_value)

        score_tensor = torch.matmul(
            linear_query,
            linear_key.transpose(-2, -1)
        ) / math.sqrt(self.__hidden_dim)
        if mask is not None:
            attn_mask = einops.repeat((mask == 0), "b l -> b l h", h=score_tensor.shape[-1])
            score_tensor = score_tensor.masked_fill_(attn_mask, -float(1e20))
        score_tensor = F.softmax(score_tensor, dim=-1)
        forced_tensor = torch.matmul(score_tensor, linear_value)
        forced_tensor = self.__dropout_layer(forced_tensor)

        return forced_tensor


class UnflatSelfAttention(nn.Module):
    """
    scores each element of the sequence with a linear layer and uses the normalized scores to compute a context over the sequence.
    """

    def __init__(self, d_hid, dropout=0.):
        super().__init__()
        self.scorer = nn.Linear(d_hid, 1)
        self.dropout = nn.Dropout(dropout)

    def forward(self, inp, lens):
        batch_size, seq_len, d_feat = inp.size()
        inp = self.dropout(inp)
        scores = self.scorer(inp.contiguous().view(-1, d_feat)).view(batch_size, seq_len)
        max_len = max(lens)
        for i, l in enumerate(lens):
            if l < max_len:
                scores.data[i, l:] = -np.inf
        scores = F.softmax(scores, dim=1)
        context = scores.unsqueeze(2).expand_as(inp).mul(inp).sum(1)
        return context