LLMChat / chat_func.py
JohnSmith9982's picture
GitHub 94adb4f
a51e754
raw
history blame
13.3 kB
# -*- coding:utf-8 -*-
from __future__ import annotations
from typing import TYPE_CHECKING, List
import logging
import json
import os
import requests
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
from presets import *
from llama_func import *
from utils import *
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
if TYPE_CHECKING:
from typing import TypedDict
class DataframeData(TypedDict):
headers: List[str]
data: List[List[str | int | bool]]
initial_prompt = "You are a helpful assistant."
API_URL = "https://api.openai.com/v1/chat/completions"
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"
def get_response(
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
history = [construct_system(system_prompt), *history]
payload = {
"model": selected_model,
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if stream:
timeout = timeout_streaming
else:
timeout = timeout_all
# 获取环境变量中的代理设置
http_proxy = os.environ.get("HTTP_PROXY") or os.environ.get("http_proxy")
https_proxy = os.environ.get("HTTPS_PROXY") or os.environ.get("https_proxy")
# 如果存在代理设置,使用它们
proxies = {}
if http_proxy:
logging.info(f"Using HTTP proxy: {http_proxy}")
proxies["http"] = http_proxy
if https_proxy:
logging.info(f"Using HTTPS proxy: {https_proxy}")
proxies["https"] = https_proxy
# 如果有代理,使用代理发送请求,否则使用默认设置发送请求
if proxies:
response = requests.post(
API_URL,
headers=headers,
json=payload,
stream=True,
timeout=timeout,
proxies=proxies,
)
else:
response = requests.post(
API_URL,
headers=headers,
json=payload,
stream=True,
timeout=timeout,
)
return response
def stream_predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
):
def get_return_value():
return chatbot, history, status_text, all_token_counts
logging.info("实时回答模式")
partial_words = ""
counter = 0
status_text = "开始实时传输回答……"
history.append(construct_user(inputs))
history.append(construct_assistant(""))
chatbot.append((parse_text(inputs), ""))
user_token_count = 0
if len(all_token_counts) == 0:
system_prompt_token_count = count_token(construct_system(system_prompt))
user_token_count = (
count_token(construct_user(inputs)) + system_prompt_token_count
)
else:
user_token_count = count_token(construct_user(inputs))
all_token_counts.append(user_token_count)
logging.info(f"输入token计数: {user_token_count}")
yield get_return_value()
try:
response = get_response(
openai_api_key,
system_prompt,
history,
temperature,
top_p,
True,
selected_model,
)
except requests.exceptions.ConnectTimeout:
status_text = (
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
)
yield get_return_value()
return
except requests.exceptions.ReadTimeout:
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
yield get_return_value()
return
yield get_return_value()
error_json_str = ""
for chunk in tqdm(response.iter_lines()):
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
chunk = chunk.decode()
chunklength = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
logging.info(chunk)
error_json_str += chunk
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
yield get_return_value()
continue
# decode each line as response data is in bytes
if chunklength > 6 and "delta" in chunk["choices"][0]:
finish_reason = chunk["choices"][0]["finish_reason"]
status_text = construct_token_message(
sum(all_token_counts), stream=True
)
if finish_reason == "stop":
yield get_return_value()
break
try:
partial_words = (
partial_words + chunk["choices"][0]["delta"]["content"]
)
except KeyError:
status_text = (
standard_error_msg
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
+ str(sum(all_token_counts))
)
yield get_return_value()
break
history[-1] = construct_assistant(partial_words)
chatbot[-1] = (parse_text(inputs), parse_text(partial_words))
all_token_counts[-1] += 1
yield get_return_value()
def predict_all(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
):
logging.info("一次性回答模式")
history.append(construct_user(inputs))
history.append(construct_assistant(""))
chatbot.append((parse_text(inputs), ""))
all_token_counts.append(count_token(construct_user(inputs)))
try:
response = get_response(
openai_api_key,
system_prompt,
history,
temperature,
top_p,
False,
selected_model,
)
except requests.exceptions.ConnectTimeout:
status_text = (
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
)
return chatbot, history, status_text, all_token_counts
except requests.exceptions.ProxyError:
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
except requests.exceptions.SSLError:
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
history[-1] = construct_assistant(content)
chatbot[-1] = (parse_text(inputs), parse_text(content))
total_token_count = response["usage"]["total_tokens"]
all_token_counts[-1] = total_token_count - sum(all_token_counts)
status_text = construct_token_message(total_token_count)
return chatbot, history, status_text, all_token_counts
def predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
stream=False,
selected_model=MODELS[0],
use_websearch_checkbox=False,
files = None,
should_check_token_count=True,
): # repetition_penalty, top_k
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
if files:
msg = "构建索引中……(这可能需要比较久的时间)"
logging.info(msg)
yield chatbot, history, msg, all_token_counts
index = construct_index(openai_api_key, file_src=files)
msg = "索引构建完成,获取回答中……"
yield chatbot, history, msg, all_token_counts
history, chatbot, status_text = chat_ai(openai_api_key, index, inputs, history, chatbot)
yield chatbot, history, status_text, all_token_counts
return
if use_websearch_checkbox:
results = ddg(inputs, max_results=3)
web_results = []
for idx, result in enumerate(results):
logging.info(f"搜索结果{idx + 1}{result}")
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
web_results = "\n\n".join(web_results)
inputs = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", inputs)
.replace("{web_results}", web_results)
)
if len(openai_api_key) != 51:
status_text = standard_error_msg + no_apikey_msg
logging.info(status_text)
chatbot.append((parse_text(inputs), ""))
if len(history) == 0:
history.append(construct_user(inputs))
history.append("")
all_token_counts.append(0)
else:
history[-2] = construct_user(inputs)
yield chatbot, history, status_text, all_token_counts
return
if stream:
yield chatbot, history, "开始生成回答……", all_token_counts
if stream:
logging.info("使用流式传输")
iter = stream_predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
)
for chatbot, history, status_text, all_token_counts in iter:
yield chatbot, history, status_text, all_token_counts
else:
logging.info("不使用流式传输")
chatbot, history, status_text, all_token_counts = predict_all(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
)
yield chatbot, history, status_text, all_token_counts
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
if len(history) > 1 and history[-1]["content"] != inputs:
logging.info(
"回答为:"
+ colorama.Fore.BLUE
+ f"{history[-1]['content']}"
+ colorama.Style.RESET_ALL
)
if stream:
max_token = max_token_streaming
else:
max_token = max_token_all
if sum(all_token_counts) > max_token and should_check_token_count:
status_text = f"精简token中{all_token_counts}/{max_token}"
logging.info(status_text)
yield chatbot, history, status_text, all_token_counts
iter = reduce_token_size(
openai_api_key,
system_prompt,
history,
chatbot,
all_token_counts,
top_p,
temperature,
stream=False,
selected_model=selected_model,
hidden=True,
)
for chatbot, history, status_text, all_token_counts in iter:
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
yield chatbot, history, status_text, all_token_counts
def retry(
openai_api_key,
system_prompt,
history,
chatbot,
token_count,
top_p,
temperature,
stream=False,
selected_model=MODELS[0],
):
logging.info("重试中……")
if len(history) == 0:
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
return
history.pop()
inputs = history.pop()["content"]
token_count.pop()
iter = predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
token_count,
top_p,
temperature,
stream=stream,
selected_model=selected_model,
)
logging.info("重试完毕")
for x in iter:
yield x
def reduce_token_size(
openai_api_key,
system_prompt,
history,
chatbot,
token_count,
top_p,
temperature,
stream=False,
selected_model=MODELS[0],
hidden=False,
):
logging.info("开始减少token数量……")
iter = predict(
openai_api_key,
system_prompt,
history,
summarize_prompt,
chatbot,
token_count,
top_p,
temperature,
stream=stream,
selected_model=selected_model,
should_check_token_count=False,
)
logging.info(f"chatbot: {chatbot}")
for chatbot, history, status_text, previous_token_count in iter:
history = history[-2:]
token_count = previous_token_count[-1:]
if hidden:
chatbot.pop()
yield chatbot, history, construct_token_message(
sum(token_count), stream=stream
), token_count
logging.info("减少token数量完毕")