jeremiebasso's picture
fix: no need torch
2ffc97e
from __future__ import annotations
import json
from dataclasses import dataclass
from pathlib import Path
from typing import Any
import numpy as np
import onnxruntime as ort
from loguru import logger
@dataclass
class ModelInfo:
base_model: str
@classmethod
def from_dir(cls, model_dir: Path):
with open(model_dir / "metadata.json", "r", encoding="utf-8") as file:
data = json.load(file)
return ModelInfo(base_model=data["bert_type"])
class ONNXModel:
def __init__(self, model: ort.InferenceSession, model_info: ModelInfo) -> None:
self.model = model
self.model_info = model_info
self.model_path = Path(model._model_path) # type: ignore
self.model_name = self.model_path.name
self.providers = model.get_providers()
if self.providers[0] in ["CUDAExecutionProvider", "TensorrtExecutionProvider"]:
self.device = "cuda"
else:
self.device = "cpu"
self.io_types = {
"input_ids": np.int32,
"attention_mask": np.bool_
}
self.input_names = [el.name for el in model.get_inputs()]
self.output_name = model.get_outputs()[0].name
@staticmethod
def load_session(
path: str | Path,
provider: str = "CPUExecutionProvider",
session_options: ort.SessionOptions | None = None,
provider_options: dict[str, Any] | None = None,
) -> ort.InferenceSession:
providers = [provider]
if provider == "TensorrtExecutionProvider":
providers.append("CUDAExecutionProvider")
elif provider == "CUDAExecutionProvider":
providers.append("CPUExecutionProvider")
if not isinstance(path, str):
path = Path(path) / "model.onnx"
providers_options = None
if provider_options is not None:
providers_options = [provider_options] + [{} for _ in range(len(providers) - 1)]
session = ort.InferenceSession(
str(path),
providers=providers,
sess_options=session_options,
provider_options=providers_options,
)
logger.info("Session loaded")
return session
@classmethod
def from_dir(cls, model_dir: str | Path) -> ONNXModel:
return ONNXModel(ONNXModel.load_session(model_dir), ModelInfo.from_dir(model_dir))
def __call__(self, **model_inputs: np.ndarray):
model_inputs = {
input_name: tensor.astype(self.io_types[input_name]) for input_name, tensor in model_inputs.items()
}
return self.model.run([self.output_name], model_inputs)[0]