|
import numpy as np |
|
|
|
|
|
def softmax(x: np.ndarray, axis=1) -> np.ndarray: |
|
""" |
|
Computes softmax array along the specified axis. |
|
""" |
|
e_x = np.exp(x) |
|
return e_x / e_x.sum(axis=axis, keepdims=True) |
|
|
|
|
|
def calibrate_sentiment_score( |
|
sentiment: float, |
|
thresh_neg: float, |
|
thresh_pos: float, |
|
zero: float = 0, |
|
) -> float: |
|
if thresh_neg != (zero - 1) / 2: |
|
alpha_neg = -(3 * zero - 1 - 4 * thresh_neg) / (2 * zero - 2 - 4 * thresh_neg) / 2 |
|
if -1 < alpha_neg and alpha_neg < 0: |
|
raise ValueError(f"Incorrect value: {thresh_neg=} is too far from -0.5!") |
|
if thresh_pos != (zero + 1) / 2: |
|
alpha_pos = -(4 * thresh_pos - 1 - 3 * zero) / (2 + 2 * zero - 4 * thresh_pos) / 2 |
|
if 0 < alpha_pos and alpha_pos < 1: |
|
raise ValueError(f"Incorrect value: {thresh_pos=} is too far from 0.5!") |
|
if sentiment < 0: |
|
return (2 * zero - 2 - 4 * thresh_neg) * sentiment**2 + (3 * zero - 1 - 4 * thresh_neg) * sentiment + zero |
|
elif sentiment > 0: |
|
return (2 + 2 * zero - 4 * thresh_pos) * sentiment**2 + (4 * thresh_pos - 1 - 3 * zero) * sentiment + zero |
|
return zero |
|
|
|
|
|
def calibrate_sentiment( |
|
sentiments: np.ndarray[float], |
|
thresh_neg: float, |
|
thresh_pos: float, |
|
zero: float, |
|
) -> np.ndarray[np.float64]: |
|
result = np.array( |
|
[ |
|
calibrate_sentiment_score(sentiment, thresh_neg=thresh_neg, thresh_pos=thresh_pos, zero=zero) |
|
for sentiment in sentiments |
|
] |
|
) |
|
return result.astype(np.float64) |
|
|
|
|
|
def scale_value(value, in_min, in_max, out_min, out_max): |
|
if in_min <= value <= in_max: |
|
scaled_value = (value - in_min) / (in_max - in_min) * (out_max - out_min) + out_min |
|
return scaled_value.round(3) |
|
else: |
|
raise ValueError(f"Input value must be in the range [{in_min}, {in_max}]") |
|
|
|
|
|
|
|
def get_sentiment( |
|
logits: np.ndarray, |
|
thresh_neg: float, |
|
thresh_pos: float, |
|
zero: float, |
|
): |
|
probabilities = softmax(logits, axis=1) |
|
sentiments = np.matmul(probabilities, np.arange(5)) / 2 - 1 |
|
score = calibrate_sentiment( |
|
sentiments=sentiments, |
|
thresh_neg=thresh_neg, |
|
thresh_pos=thresh_pos, |
|
zero=zero, |
|
)[0] |
|
if score < -0.33: |
|
return scale_value(score, -1, -0.33, 0, 1), "NEGATIVE" |
|
elif score < 0.33: |
|
return scale_value(score, -0.33, 0.33, 0, 1), "NEUTRAL" |
|
else: |
|
return scale_value(score, 0.33, 1, 0, 1), "POSITIVE" |