Spaces:
Runtime error
Runtime error
import os | |
import io | |
from typing_extensions import Literal | |
import gradio as gr | |
import tempfile | |
import numpy as np | |
from dotenv import load_dotenv | |
from elevenlabs.client import ElevenLabs | |
from elevenlabs import play, stream, save | |
from elevenlabs import Voice, VoiceSettings | |
from pydub import AudioSegment | |
from pydub.playback import play | |
import imageio_ffmpeg as ffmpeg | |
import requests | |
from audiostretchy.stretch import AudioStretch | |
load_dotenv() | |
def verify_auth(username, password): | |
if username == USER and password == PASSWORD: | |
return True | |
else: | |
return False | |
ELE_API_KEY = os.getenv("ELE_API_KEY") | |
USER = os.getenv("USER") | |
PASSWORD = os.getenv("PASSWORD") | |
MODEL = "eleven_multilingual_v2" | |
ele_client = ElevenLabs(api_key=ELE_API_KEY) | |
VOICE = [ | |
"μΉν", | |
"μ°μΉ" | |
] | |
KEY_MAPPING = { | |
"μΉν": "0RBbbgk6KUJxHmWzPiHz", # μΉν+μ μμΉ΄(2:1) | |
"μ°μΉ": "ASwOiisDbuaP2R1jUQU6", # μ°μΉ+TTS_KKC(1:1) | |
} | |
AudioSegment.converter = ffmpeg.get_ffmpeg_exe() | |
def change_pitch(audio_segment, pitch_shift): | |
new_sample_rate = int(audio_segment.frame_rate * (2.0 ** pitch_shift)) | |
pitched_audio = audio_segment._spawn(audio_segment.raw_data, overrides={'frame_rate': new_sample_rate}) | |
return pitched_audio.set_frame_rate(audio_segment.frame_rate) | |
def predict( | |
text: str, | |
voice: str, | |
output_file_format: Literal["mp3"] = "", | |
speed: float = 1.0, | |
pitch_shift: float = 0.0, | |
stability: float = 0.5, | |
similarity: float = 0.7, | |
style_exaggeration: float = 0., | |
speaker_boost: bool = True | |
): | |
try: | |
voice_setup=Voice( | |
voice_id=KEY_MAPPING[voice], | |
settings=VoiceSettings(stability=stability, similarity_boost=similarity, style=style_exaggeration, use_speaker_boost=speaker_boost) | |
) | |
audio = ele_client.generate( | |
text = text, | |
voice = voice_setup, | |
model=MODEL | |
) | |
audio_data = b''.join(audio) | |
except Exception as e: | |
raise requests.exceptions.RequestException(f"An error occurred while generating speech. Please check your API key and come back try again. {str(e)}") | |
print(f"[Text] {text}") | |
audio_stretch = AudioStretch() | |
audio_stretch.open_mp3(io.BytesIO(audio_data)) | |
audio_stretch.stretch(ratio=1/speed) # speed 0.5 -> 2.0\ | |
# Export the final audio to a temporary file | |
with tempfile.NamedTemporaryFile(suffix=f".{output_file_format}", delete=False) as temp_file: | |
audio_stretch.save(path=temp_file.name) | |
audio = AudioSegment.from_file(temp_file.name) | |
# Adjust pitch if needed | |
if pitch_shift != 0.0: | |
audio = change_pitch(audio, pitch_shift) | |
audio.export(temp_file.name, format=output_file_format) | |
temp_file_path = temp_file.name | |
return temp_file_path | |
with gr.Blocks() as demo: | |
gr.Markdown("# <center> Letsur Text-To-Speech API with Gradio </center>") | |
with gr.Row(variant="panel"): | |
voice = gr.Dropdown(choices=VOICE, label="Voice Options", value="μΉν") | |
output_file_format = gr.Dropdown(choices=["mp3"], label="Output Options", value="mp3") | |
text = gr.Textbox(label="Input text", | |
value="μλ νμΈμ.", | |
placeholder="μλ νμΈμ.") | |
# Additional parameters | |
with gr.Accordion("Advanced Settings", open=False): | |
speed = gr.Slider(label="speed", minimum=0.8, maximum=1.2, step=0.1, value=1.0) | |
pitch_shift = gr.Slider(label="pitch_shift", minimum=-0.1, maximum=0.1, step=0.05, value=0.0) # λ²μ: 0~1 | |
stability = gr.Slider(label="stability", minimum=0., maximum=1., step=0.1, value=1.0) # λ²μ: 0~1 | |
similarity = gr.Slider(label="similarity", minimum=0., maximum=1., step=0.1, value=1.0) # λ²μ: 0~1 | |
style_exaggeration = gr.Slider(label="style_exaggeration", minimum=0., maximum=1., step=0.1, value=0.) # λ²μ: 0~1 | |
speaker_boost = gr.Checkbox(label="speaker_boost", value=True) # True or False | |
btn = gr.Button("Text-To-Speech") | |
output_audio = gr.Audio(label="Speech Output") | |
inputs = [text, voice, output_file_format] + [speed, pitch_shift, stability, similarity, style_exaggeration, speaker_boost] | |
text.submit(fn=predict, inputs=inputs, outputs=output_audio, api_name="predict") | |
btn.click(fn=predict, inputs=inputs, outputs=output_audio, api_name=False) | |
demo.queue().launch() |