2024-06-13 / app.py
Letsur's picture
Upload 2 files
ce79f00 verified
import os
import io
from typing_extensions import Literal
import gradio as gr
import tempfile
import numpy as np
from dotenv import load_dotenv
from elevenlabs.client import ElevenLabs
from elevenlabs import play, stream, save
from elevenlabs import Voice, VoiceSettings
from pydub import AudioSegment
from pydub.playback import play
import imageio_ffmpeg as ffmpeg
import requests
from audiostretchy.stretch import AudioStretch
load_dotenv()
def verify_auth(username, password):
if username == USER and password == PASSWORD:
return True
else:
return False
ELE_API_KEY = os.getenv("ELE_API_KEY")
USER = os.getenv("USER")
PASSWORD = os.getenv("PASSWORD")
MODEL = "eleven_multilingual_v2"
ele_client = ElevenLabs(api_key=ELE_API_KEY)
VOICE = [
"μŠΉν˜„",
"우승"
]
KEY_MAPPING = {
"μŠΉν˜„": "0RBbbgk6KUJxHmWzPiHz", # μŠΉν˜„+μ œμ‹œμΉ΄(2:1)
"우승": "ASwOiisDbuaP2R1jUQU6", # 우승+TTS_KKC(1:1)
}
AudioSegment.converter = ffmpeg.get_ffmpeg_exe()
def change_pitch(audio_segment, pitch_shift):
new_sample_rate = int(audio_segment.frame_rate * (2.0 ** pitch_shift))
pitched_audio = audio_segment._spawn(audio_segment.raw_data, overrides={'frame_rate': new_sample_rate})
return pitched_audio.set_frame_rate(audio_segment.frame_rate)
def predict(
text: str,
voice: str,
output_file_format: Literal["mp3"] = "",
speed: float = 1.0,
pitch_shift: float = 0.0,
stability: float = 0.5,
similarity: float = 0.7,
style_exaggeration: float = 0.,
speaker_boost: bool = True
):
try:
voice_setup=Voice(
voice_id=KEY_MAPPING[voice],
settings=VoiceSettings(stability=stability, similarity_boost=similarity, style=style_exaggeration, use_speaker_boost=speaker_boost)
)
audio = ele_client.generate(
text = text,
voice = voice_setup,
model=MODEL
)
audio_data = b''.join(audio)
except Exception as e:
raise requests.exceptions.RequestException(f"An error occurred while generating speech. Please check your API key and come back try again. {str(e)}")
print(f"[Text] {text}")
audio_stretch = AudioStretch()
audio_stretch.open_mp3(io.BytesIO(audio_data))
audio_stretch.stretch(ratio=1/speed) # speed 0.5 -> 2.0\
# Export the final audio to a temporary file
with tempfile.NamedTemporaryFile(suffix=f".{output_file_format}", delete=False) as temp_file:
audio_stretch.save(path=temp_file.name)
audio = AudioSegment.from_file(temp_file.name)
# Adjust pitch if needed
if pitch_shift != 0.0:
audio = change_pitch(audio, pitch_shift)
audio.export(temp_file.name, format=output_file_format)
temp_file_path = temp_file.name
return temp_file_path
with gr.Blocks() as demo:
gr.Markdown("# <center> Letsur Text-To-Speech API with Gradio </center>")
with gr.Row(variant="panel"):
voice = gr.Dropdown(choices=VOICE, label="Voice Options", value="μŠΉν˜„")
output_file_format = gr.Dropdown(choices=["mp3"], label="Output Options", value="mp3")
text = gr.Textbox(label="Input text",
value="μ•ˆλ…•ν•˜μ„Έμš”.",
placeholder="μ•ˆλ…•ν•˜μ„Έμš”.")
# Additional parameters
with gr.Accordion("Advanced Settings", open=False):
speed = gr.Slider(label="speed", minimum=0.8, maximum=1.2, step=0.1, value=1.0)
pitch_shift = gr.Slider(label="pitch_shift", minimum=-0.1, maximum=0.1, step=0.05, value=0.0) # λ²”μœ„: 0~1
stability = gr.Slider(label="stability", minimum=0., maximum=1., step=0.1, value=1.0) # λ²”μœ„: 0~1
similarity = gr.Slider(label="similarity", minimum=0., maximum=1., step=0.1, value=1.0) # λ²”μœ„: 0~1
style_exaggeration = gr.Slider(label="style_exaggeration", minimum=0., maximum=1., step=0.1, value=0.) # λ²”μœ„: 0~1
speaker_boost = gr.Checkbox(label="speaker_boost", value=True) # True or False
btn = gr.Button("Text-To-Speech")
output_audio = gr.Audio(label="Speech Output")
inputs = [text, voice, output_file_format] + [speed, pitch_shift, stability, similarity, style_exaggeration, speaker_boost]
text.submit(fn=predict, inputs=inputs, outputs=output_audio, api_name="predict")
btn.click(fn=predict, inputs=inputs, outputs=output_audio, api_name=False)
demo.queue().launch()