Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,140 +1,134 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
from logging.handlers import RotatingFileHandler
|
6 |
import gradio as gr
|
|
|
7 |
import torch
|
8 |
-
from transformers import AutoModelForCausalLM, GemmaTokenizerFast,
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
logger.setLevel(logging.DEBUG)
|
17 |
-
file_handler = RotatingFileHandler(log_file, maxBytes=10*1024*1024, backupCount=5)
|
18 |
-
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
|
19 |
-
logger.addHandler(file_handler)
|
20 |
|
21 |
-
|
22 |
|
23 |
model_id = "google/gemma-2-9b-it"
|
24 |
tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# Function to load model with GPU availability check
|
27 |
-
def load_model():
|
28 |
-
max_attempts = 5
|
29 |
-
attempts = 0
|
30 |
-
while attempts < max_attempts:
|
31 |
-
if torch.cuda.is_available():
|
32 |
-
logger.debug("GPU is available. Proceeding with GPU setup.")
|
33 |
-
try:
|
34 |
-
return AutoModelForCausalLM.from_pretrained(
|
35 |
-
model_id,
|
36 |
-
device_map="auto",
|
37 |
-
torch_dtype=torch.bfloat16,
|
38 |
-
)
|
39 |
-
except Exception as e:
|
40 |
-
logger.error(f"Error initializing model with GPU: {e}. Retrying...")
|
41 |
-
attempts += 1
|
42 |
-
time.sleep(random.uniform(20, 60)) # Wait before retrying
|
43 |
-
else:
|
44 |
-
logger.warning("GPU is not available. Retrying GPU initialization...")
|
45 |
-
attempts += 1
|
46 |
-
time.sleep(random.uniform(20, 60))
|
47 |
-
|
48 |
-
# If GPU is still not available, fall back to CPU
|
49 |
-
logger.warning("Falling back to CPU setup after multiple attempts.")
|
50 |
-
return AutoModelForCausalLM.from_pretrained(
|
51 |
-
model_id,
|
52 |
-
device_map="auto",
|
53 |
-
low_cpu_mem_usage=True,
|
54 |
-
token=os.getenv('HF_TOKEN'),
|
55 |
-
)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
pipe = pipeline(
|
70 |
-
"text-generation",
|
71 |
-
model=model,
|
72 |
-
tokenizer=tokenizer,
|
73 |
-
max_length=2048,
|
74 |
-
temperature=0.7,
|
75 |
-
top_k=50,
|
76 |
-
top_p=0.9,
|
77 |
-
repetition_penalty=1.2,
|
78 |
-
)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
{system_prompt}
|
86 |
-
<|im_end|>
|
87 |
-
{history}
|
88 |
-
<|im_start|>user
|
89 |
-
{human_input}
|
90 |
-
<|im_end|>
|
91 |
-
<|im_start|>assistant"""
|
92 |
-
|
93 |
-
# Create LangChain prompt and chain
|
94 |
-
prompt = PromptTemplate(
|
95 |
-
template=template, input_variables=["system_prompt", "history", "human_input"]
|
96 |
-
)
|
97 |
-
chain = prompt | chat_model
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
],
|
123 |
-
|
124 |
-
|
125 |
)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
except Exception as e:
|
135 |
-
retry_delay = random.uniform(60, 120) # Increased delay between retries
|
136 |
-
logger.error(f"Failed to launch interface: {e}. Retrying in {retry_delay:.2f} seconds...")
|
137 |
-
retry_count += 1
|
138 |
-
time.sleep(retry_delay)
|
139 |
-
|
140 |
-
logger.debug("Chat interface initialized and launched")
|
|
|
1 |
import os
|
2 |
+
from threading import Thread
|
3 |
+
from typing import Iterator
|
4 |
+
|
|
|
5 |
import gradio as gr
|
6 |
+
import spaces
|
7 |
import torch
|
8 |
+
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
|
9 |
+
|
10 |
+
DESCRIPTION = """\
|
11 |
+
# Gemma 2 9B IT
|
12 |
+
|
13 |
+
Gemma 2 is Google's latest iteration of open LLMs.
|
14 |
+
This is a demo of [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it), fine-tuned for instruction following.
|
15 |
+
For more details, please check [our post](https://huggingface.co/blog/gemma2).
|
16 |
+
|
17 |
+
👉 Looking for a larger and more powerful version? Try the 27B version in [HuggingChat](https://huggingface.co/chat/models/google/gemma-2-27b-it).
|
18 |
+
"""
|
19 |
|
20 |
+
MAX_MAX_NEW_TOKENS = 2048
|
21 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
22 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
25 |
|
26 |
model_id = "google/gemma-2-9b-it"
|
27 |
tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_id,
|
30 |
+
device_map="auto",
|
31 |
+
torch_dtype=torch.bfloat16,
|
32 |
+
)
|
33 |
+
model.config.sliding_window = 4096
|
34 |
+
model.eval()
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
@spaces.GPU(duration=90)
|
38 |
+
def generate(
|
39 |
+
message: str,
|
40 |
+
chat_history: list[dict],
|
41 |
+
max_new_tokens: int = 1024,
|
42 |
+
temperature: float = 0.6,
|
43 |
+
top_p: float = 0.9,
|
44 |
+
top_k: int = 50,
|
45 |
+
repetition_penalty: float = 1.2,
|
46 |
+
) -> Iterator[str]:
|
47 |
+
conversation = chat_history.copy()
|
48 |
+
conversation.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
51 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
52 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
53 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
54 |
+
input_ids = input_ids.to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
57 |
+
generate_kwargs = dict(
|
58 |
+
{"input_ids": input_ids},
|
59 |
+
streamer=streamer,
|
60 |
+
max_new_tokens=max_new_tokens,
|
61 |
+
do_sample=True,
|
62 |
+
top_p=top_p,
|
63 |
+
top_k=top_k,
|
64 |
+
temperature=temperature,
|
65 |
+
num_beams=1,
|
66 |
+
repetition_penalty=repetition_penalty,
|
67 |
)
|
68 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
69 |
+
t.start()
|
70 |
+
|
71 |
+
outputs = []
|
72 |
+
for text in streamer:
|
73 |
+
outputs.append(text)
|
74 |
+
yield "".join(outputs)
|
75 |
+
|
76 |
+
|
77 |
+
chat_interface = gr.ChatInterface(
|
78 |
+
fn=generate,
|
79 |
+
additional_inputs=[
|
80 |
+
gr.Slider(
|
81 |
+
label="Max new tokens",
|
82 |
+
minimum=1,
|
83 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
84 |
+
step=1,
|
85 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
86 |
+
),
|
87 |
+
gr.Slider(
|
88 |
+
label="Temperature",
|
89 |
+
minimum=0.1,
|
90 |
+
maximum=4.0,
|
91 |
+
step=0.1,
|
92 |
+
value=0.6,
|
93 |
+
),
|
94 |
+
gr.Slider(
|
95 |
+
label="Top-p (nucleus sampling)",
|
96 |
+
minimum=0.05,
|
97 |
+
maximum=1.0,
|
98 |
+
step=0.05,
|
99 |
+
value=0.9,
|
100 |
+
),
|
101 |
+
gr.Slider(
|
102 |
+
label="Top-k",
|
103 |
+
minimum=1,
|
104 |
+
maximum=1000,
|
105 |
+
step=1,
|
106 |
+
value=50,
|
107 |
+
),
|
108 |
+
gr.Slider(
|
109 |
+
label="Repetition penalty",
|
110 |
+
minimum=1.0,
|
111 |
+
maximum=2.0,
|
112 |
+
step=0.05,
|
113 |
+
value=1.2,
|
114 |
+
),
|
115 |
+
],
|
116 |
+
stop_btn=None,
|
117 |
+
examples=[
|
118 |
+
["Hello there! How are you doing?"],
|
119 |
+
["Can you explain briefly to me what is the Python programming language?"],
|
120 |
+
["Explain the plot of Cinderella in a sentence."],
|
121 |
+
["How many hours does it take a man to eat a Helicopter?"],
|
122 |
+
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
123 |
],
|
124 |
+
cache_examples=False,
|
125 |
+
type="messages",
|
126 |
)
|
127 |
|
128 |
+
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
129 |
+
gr.Markdown(DESCRIPTION)
|
130 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
131 |
+
chat_interface.render()
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
demo.queue(max_size=20).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|