Spaces:
Sleeping
Sleeping
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout=0.0, max_len=32): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
pe = torch.zeros(1, max_len, d_model) | |
pe[0, :, 0::2] = torch.sin(position * div_term) | |
pe[0, :, 1::2] = torch.cos(position * div_term) | |
self.register_buffer("pe", pe) | |
def forward(self, x, roll: Optional[int] = None, full_video_length: Optional[int] = None): | |
""" | |
Support roll for positional encoding. | |
We select the first `full_video_length` elements and roll it by `roll`. | |
And then select the first `x.size(1)` elements and add them to `x`. | |
Take full_video_length = 4, roll = 2, and x.size(1) = 1 as example. | |
If the original positional encoding is: | |
[1, 2, 3, 4, 5, 6, 7, 8] | |
The rolled encoding is: | |
[3, 4, 1, 2] | |
And the selected encoding added to input is: | |
[3, 4] | |
""" | |
if roll is None: | |
pe = self.pe[:, : x.size(1)] | |
else: | |
assert full_video_length is not None, "full_video_length must be passed when roll is not None." | |
pe = self.pe[:, :full_video_length].roll(shifts=roll, dims=1)[:, : x.size(1)] | |
x = x + pe | |
return self.dropout(x) | |