leoxing1996
add demo
d16b52d
# Adapted from https://github.com/guoyww/AnimateDiff
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
from torch import nn
@dataclass
class Transformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class Transformer3DModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
# Input
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
if encoder_hidden_states is not None:
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b f) n c", f=video_length)
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
video_length=video_length,
)
# Output
if not self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
if not return_dict:
return (output,)
return Transformer3DModelOutput(sample=output)
class BasicTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
self.unet_use_temporal_attention = unet_use_temporal_attention
# SC-Attn
assert unet_use_cross_frame_attention is not None
if unet_use_cross_frame_attention:
self.attn1 = SparseCausalAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
else:
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
# Cross-Attn
if cross_attention_dim is not None:
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
else:
self.attn2 = None
if cross_attention_dim is not None:
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
else:
self.norm2 = None
# Feed-forward
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
# Temp-Attn
assert unet_use_temporal_attention is not None
if unet_use_temporal_attention:
self.attn_temp = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
def forward(
self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
):
# SparseCausal-Attention
norm_hidden_states = (
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
)
# if self.only_cross_attention:
# hidden_states = (
# self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
# )
# else:
# hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
# pdb.set_trace()
if self.unet_use_cross_frame_attention:
hidden_states = (
self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
+ hidden_states
)
else:
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
if self.attn2 is not None:
# Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
hidden_states = (
self.attn2(
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
)
+ hidden_states
)
# Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
# Temporal-Attention
if self.unet_use_temporal_attention:
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
norm_hidden_states = (
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
)
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
class CrossAttention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
added_kv_proj_dim: Optional[int] = None,
norm_num_groups: Optional[int] = None,
*args,
**kwargs,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.scale = dim_head**-0.5
self.heads = heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self._slice_size = None
self._use_memory_efficient_attention_xformers = False
self.added_kv_proj_dim = added_kv_proj_dim
if norm_num_groups is not None:
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
else:
self.group_norm = None
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
self.to_out.append(nn.Dropout(dropout))
self.kv_channels = cross_attention_dim
def set_info(self, h: int, w: int, *args, **kwargs):
"""
Useful function to pre-assign buffer for cacheable temporal-attn
"""
self.h = h
self.w = w
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def set_attention_slice(self, slice_size):
if slice_size is not None and slice_size > self.sliceable_head_dim:
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
self._slice_size = slice_size
@torch.no_grad()
def vis_attn_mask(
self,
query: Optional[torch.Tensor] = None,
key: Optional[torch.Tensor] = None,
attn_map: Optional[torch.Tensor] = None,
attn_bias: Optional[torch.Tensor] = None,
):
# dtype = torch.float
dtype = torch.half
if attn_map is None:
attn_map = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=dtype, device=query.device),
query.to(dtype),
key.transpose(-1, -2).to(dtype),
beta=0,
alpha=self.scale,
)
if attn_bias is not None:
attn_map = attn_map + attn_bias.to(dtype)
attn_map = attn_map.softmax(dim=-1)
hw_head = self.h * self.w * self.heads
assert (
attn_map.shape[0] % hw_head == 0
), "height-width-heads must be divisible by the first dimension of attn map. "
# NOTE: here we strict batch size is 1,
assert attn_map.shape[0] // hw_head in [1, 2], "input batch size must be 1 or 2 (for cfg)."
if (attn_map.shape[0] // hw_head) == 2:
# NOTE: only visualize cond one
attn_map = attn_map[hw_head:]
attn_map = attn_map.mean(0).cpu().numpy()
# AttnMapVisualizer.visualize_attn_map(attn_map, 'f16-at-one-time-sink.png')
# exit()
return attn_map
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
encoder_hidden_states = encoder_hidden_states
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
else:
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def _attention(self, query, key, value, attention_mask=None):
if self.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
if self.upcast_softmax:
attention_scores = attention_scores.float()
attention_probs = attention_scores.softmax(dim=-1)
# cast back to the original dtype
attention_probs = attention_probs.to(value.dtype)
# compute attention output
hidden_states = torch.bmm(attention_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
)
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
for i in range(hidden_states.shape[0] // slice_size):
start_idx = i * slice_size
end_idx = (i + 1) * slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
if self.upcast_attention:
query_slice = query_slice.float()
key_slice = key_slice.float()
attn_slice = torch.baddbmm(
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
query_slice,
key_slice.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attn_slice = attn_slice + attention_mask[start_idx:end_idx]
if self.upcast_softmax:
attn_slice = attn_slice.float()
attn_slice = attn_slice.softmax(dim=-1)
# cast back to the original dtype
attn_slice = attn_slice.to(value.dtype)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def set_use_memory_efficient_attention_xformers(self, *args, **kwargs):
print("Set Xformers for MotionModule's Attention.")
self._use_memory_efficient_attention_xformers = True
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
# TODO attention_mask
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def _memory_efficient_attention_pt20(self, query, key, value, attention_mask):
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
hidden_states = torch.nn.functional.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0, is_causal=False
)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
class SparseCausalAttention(CrossAttention):
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
batch_size, sequence_length, _ = hidden_states.shape
encoder_hidden_states = encoder_hidden_states
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
raise NotImplementedError
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
former_frame_index = torch.arange(video_length) - 1
former_frame_index[0] = 0
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
# key = torch.cat([key[:, [0] * video_length], key[:, [0] * video_length]], dim=2)
key = key[:, [0] * video_length]
key = rearrange(key, "b f d c -> (b f) d c")
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
# value = torch.cat([value[:, [0] * video_length], value[:, [0] * video_length]], dim=2)
# value = value[:, former_frame_index]
value = rearrange(value, "b f d c -> (b f) d c")
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
class AttnMapVisualizer:
def __init__(self):
pass
def set_visualizer(self, unet: nn.Module):
pass
def add_attn_map(self):
pass
@staticmethod
def visualize_attn_map(attn_map: torch.Tensor, save_path: str):
import numpy as np
from matplotlib import pyplot as plt
plt.imshow(attn_map)
ax = plt.gca()
ax.set_xticks(np.arange(-0.5, attn_map.shape[0] - 1, 1))
ax.set_yticks(np.arange(-0.5, attn_map.shape[1] - 1, 1))
ax.set_xticklabels(np.arange(0, attn_map.shape[0], 1))
ax.set_yticklabels(np.arange(0, attn_map.shape[1], 1))
ax.grid(color="r", linestyle="-", linewidth=1)
plt.colorbar()
plt.savefig(save_path)
print(f"Saved to {save_path}")