Spaces:
Sleeping
Sleeping
# Adapted from https://github.com/guoyww/AnimateDiff | |
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models import ModelMixin | |
from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
from einops import rearrange, repeat | |
from torch import nn | |
class Transformer3DModelOutput(BaseOutput): | |
sample: torch.FloatTensor | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
class Transformer3DModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# Define input layers | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
# Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
unet_use_temporal_attention=unet_use_temporal_attention, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): | |
# Input | |
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
video_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
if encoder_hidden_states is not None: | |
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b f) n c", f=video_length) | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
else: | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
hidden_states = self.proj_in(hidden_states) | |
# Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
video_length=video_length, | |
) | |
# Output | |
if not self.use_linear_projection: | |
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
hidden_states = self.proj_out(hidden_states) | |
else: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
output = hidden_states + residual | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
if not return_dict: | |
return (output,) | |
return Transformer3DModelOutput(sample=output) | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention | |
self.unet_use_temporal_attention = unet_use_temporal_attention | |
# SC-Attn | |
assert unet_use_cross_frame_attention is not None | |
if unet_use_cross_frame_attention: | |
self.attn1 = SparseCausalAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
self.attn1 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
# Cross-Attn | |
if cross_attention_dim is not None: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
self.attn2 = None | |
if cross_attention_dim is not None: | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
else: | |
self.norm2 = None | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
# Temp-Attn | |
assert unet_use_temporal_attention is not None | |
if unet_use_temporal_attention: | |
self.attn_temp = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
def forward( | |
self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None | |
): | |
# SparseCausal-Attention | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
) | |
# if self.only_cross_attention: | |
# hidden_states = ( | |
# self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states | |
# ) | |
# else: | |
# hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states | |
# pdb.set_trace() | |
if self.unet_use_cross_frame_attention: | |
hidden_states = ( | |
self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) | |
+ hidden_states | |
) | |
else: | |
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states | |
if self.attn2 is not None: | |
# Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask | |
) | |
+ hidden_states | |
) | |
# Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
# Temporal-Attention | |
if self.unet_use_temporal_attention: | |
d = hidden_states.shape[1] | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
norm_hidden_states = ( | |
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) | |
) | |
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |
class CrossAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
*args, | |
**kwargs, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self._slice_size = None | |
self._use_memory_efficient_attention_xformers = False | |
self.added_kv_proj_dim = added_kv_proj_dim | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
else: | |
self.group_norm = None | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
self.kv_channels = cross_attention_dim | |
def set_info(self, h: int, w: int, *args, **kwargs): | |
""" | |
Useful function to pre-assign buffer for cacheable temporal-attn | |
""" | |
self.h = h | |
self.w = w | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
self._slice_size = slice_size | |
def vis_attn_mask( | |
self, | |
query: Optional[torch.Tensor] = None, | |
key: Optional[torch.Tensor] = None, | |
attn_map: Optional[torch.Tensor] = None, | |
attn_bias: Optional[torch.Tensor] = None, | |
): | |
# dtype = torch.float | |
dtype = torch.half | |
if attn_map is None: | |
attn_map = torch.baddbmm( | |
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=dtype, device=query.device), | |
query.to(dtype), | |
key.transpose(-1, -2).to(dtype), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attn_bias is not None: | |
attn_map = attn_map + attn_bias.to(dtype) | |
attn_map = attn_map.softmax(dim=-1) | |
hw_head = self.h * self.w * self.heads | |
assert ( | |
attn_map.shape[0] % hw_head == 0 | |
), "height-width-heads must be divisible by the first dimension of attn map. " | |
# NOTE: here we strict batch size is 1, | |
assert attn_map.shape[0] // hw_head in [1, 2], "input batch size must be 1 or 2 (for cfg)." | |
if (attn_map.shape[0] // hw_head) == 2: | |
# NOTE: only visualize cond one | |
attn_map = attn_map[hw_head:] | |
attn_map = attn_map.mean(0).cpu().numpy() | |
# AttnMapVisualizer.visualize_attn_map(attn_map, 'f16-at-one-time-sink.png') | |
# exit() | |
return attn_map | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
else: | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def _attention(self, query, key, value, attention_mask=None): | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
attention_scores = torch.baddbmm( | |
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
query, | |
key.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
# cast back to the original dtype | |
attention_probs = attention_probs.to(value.dtype) | |
# compute attention output | |
hidden_states = torch.bmm(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
batch_size_attention = query.shape[0] | |
hidden_states = torch.zeros( | |
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
) | |
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
for i in range(hidden_states.shape[0] // slice_size): | |
start_idx = i * slice_size | |
end_idx = (i + 1) * slice_size | |
query_slice = query[start_idx:end_idx] | |
key_slice = key[start_idx:end_idx] | |
if self.upcast_attention: | |
query_slice = query_slice.float() | |
key_slice = key_slice.float() | |
attn_slice = torch.baddbmm( | |
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
query_slice, | |
key_slice.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
if self.upcast_softmax: | |
attn_slice = attn_slice.float() | |
attn_slice = attn_slice.softmax(dim=-1) | |
# cast back to the original dtype | |
attn_slice = attn_slice.to(value.dtype) | |
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
hidden_states[start_idx:end_idx] = attn_slice | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def set_use_memory_efficient_attention_xformers(self, *args, **kwargs): | |
print("Set Xformers for MotionModule's Attention.") | |
self._use_memory_efficient_attention_xformers = True | |
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
# TODO attention_mask | |
query = query.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _memory_efficient_attention_pt20(self, query, key, value, attention_mask): | |
query = query.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
hidden_states = torch.nn.functional.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0, is_causal=False | |
) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
class SparseCausalAttention(CrossAttention): | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
raise NotImplementedError | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
former_frame_index = torch.arange(video_length) - 1 | |
former_frame_index[0] = 0 | |
key = rearrange(key, "(b f) d c -> b f d c", f=video_length) | |
# key = torch.cat([key[:, [0] * video_length], key[:, [0] * video_length]], dim=2) | |
key = key[:, [0] * video_length] | |
key = rearrange(key, "b f d c -> (b f) d c") | |
value = rearrange(value, "(b f) d c -> b f d c", f=video_length) | |
# value = torch.cat([value[:, [0] * video_length], value[:, [0] * video_length]], dim=2) | |
# value = value[:, former_frame_index] | |
value = rearrange(value, "b f d c -> (b f) d c") | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
class AttnMapVisualizer: | |
def __init__(self): | |
pass | |
def set_visualizer(self, unet: nn.Module): | |
pass | |
def add_attn_map(self): | |
pass | |
def visualize_attn_map(attn_map: torch.Tensor, save_path: str): | |
import numpy as np | |
from matplotlib import pyplot as plt | |
plt.imshow(attn_map) | |
ax = plt.gca() | |
ax.set_xticks(np.arange(-0.5, attn_map.shape[0] - 1, 1)) | |
ax.set_yticks(np.arange(-0.5, attn_map.shape[1] - 1, 1)) | |
ax.set_xticklabels(np.arange(0, attn_map.shape[0], 1)) | |
ax.set_yticklabels(np.arange(0, attn_map.shape[1], 1)) | |
ax.grid(color="r", linestyle="-", linewidth=1) | |
plt.colorbar() | |
plt.savefig(save_path) | |
print(f"Saved to {save_path}") | |