Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import timm | |
import types | |
import math | |
import torch.nn.functional as F | |
class Slice(nn.Module): | |
def __init__(self, start_index=1): | |
super(Slice, self).__init__() | |
self.start_index = start_index | |
def forward(self, x): | |
return x[:, self.start_index :] | |
class AddReadout(nn.Module): | |
def __init__(self, start_index=1): | |
super(AddReadout, self).__init__() | |
self.start_index = start_index | |
def forward(self, x): | |
if self.start_index == 2: | |
readout = (x[:, 0] + x[:, 1]) / 2 | |
else: | |
readout = x[:, 0] | |
return x[:, self.start_index :] + readout.unsqueeze(1) | |
class ProjectReadout(nn.Module): | |
def __init__(self, in_features, start_index=1): | |
super(ProjectReadout, self).__init__() | |
self.start_index = start_index | |
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) | |
def forward(self, x): | |
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) | |
features = torch.cat((x[:, self.start_index :], readout), -1) | |
return self.project(features) | |
class Transpose(nn.Module): | |
def __init__(self, dim0, dim1): | |
super(Transpose, self).__init__() | |
self.dim0 = dim0 | |
self.dim1 = dim1 | |
def forward(self, x): | |
x = x.transpose(self.dim0, self.dim1) | |
return x | |
class View(nn.Module): | |
def __init__(self, dim, shape): | |
super(View, self).__init__() | |
self.dim = dim | |
self.shape = shape | |
def forward(self, input): | |
new_shape = list(input.shape)[:self.dim] + list(self.shape) + list(input.shape)[self.dim+1:] | |
return input.view(*new_shape) | |
nn.Unflatten = View | |
def forward_vit(pretrained, x): | |
b, c, h, w = x.shape | |
glob = pretrained.model.forward_flex(x) | |
layer_1 = pretrained.activations["1"] | |
layer_2 = pretrained.activations["2"] | |
layer_3 = pretrained.activations["3"] | |
layer_4 = pretrained.activations["4"] | |
layer_1 = pretrained.act_postprocess1[0:2](layer_1) | |
layer_2 = pretrained.act_postprocess2[0:2](layer_2) | |
layer_3 = pretrained.act_postprocess3[0:2](layer_3) | |
layer_4 = pretrained.act_postprocess4[0:2](layer_4) | |
unflatten = nn.Sequential( | |
nn.Unflatten( | |
2, | |
torch.Size( | |
[ | |
h // pretrained.model.patch_size[1], | |
w // pretrained.model.patch_size[0], | |
] | |
), | |
) | |
) | |
if layer_1.ndim == 3: | |
layer_1 = unflatten(layer_1) | |
if layer_2.ndim == 3: | |
layer_2 = unflatten(layer_2) | |
if layer_3.ndim == 3: | |
layer_3 = unflatten(layer_3) | |
if layer_4.ndim == 3: | |
layer_4 = unflatten(layer_4) | |
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) | |
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) | |
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) | |
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) | |
return layer_1, layer_2, layer_3, layer_4 | |
def _resize_pos_embed(self, posemb, gs_h, gs_w): | |
posemb_tok, posemb_grid = ( | |
posemb[:, : self.start_index], | |
posemb[0, self.start_index :], | |
) | |
gs_old = int(math.sqrt(len(posemb_grid))) | |
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") | |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) | |
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) | |
return posemb | |
def forward_flex(self, x): | |
b, c, h, w = x.shape | |
pos_embed = self._resize_pos_embed( | |
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] | |
) | |
B = x.shape[0] | |
if hasattr(self.patch_embed, "backbone"): | |
x = self.patch_embed.backbone(x) | |
if isinstance(x, (list, tuple)): | |
x = x[-1] # last feature if backbone outputs list/tuple of features | |
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) | |
if getattr(self, "dist_token", None) is not None: | |
cls_tokens = self.cls_token.expand( | |
B, -1, -1 | |
) # stole cls_tokens impl from Phil Wang, thanks | |
dist_token = self.dist_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, dist_token, x), dim=1) | |
else: | |
cls_tokens = self.cls_token.expand( | |
B, -1, -1 | |
) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
return x | |
activations = {} | |
def get_activation(name): | |
def hook(model, input, output): | |
activations[name] = output | |
return hook | |
def get_readout_oper(vit_features, features, use_readout, start_index=1): | |
if use_readout == "ignore": | |
readout_oper = [Slice(start_index)] * len(features) | |
elif use_readout == "add": | |
readout_oper = [AddReadout(start_index)] * len(features) | |
elif use_readout == "project": | |
readout_oper = [ | |
ProjectReadout(vit_features, start_index) for out_feat in features | |
] | |
else: | |
assert ( | |
False | |
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" | |
return readout_oper | |
def _make_vit_b16_backbone( | |
model, | |
features=[96, 192, 384, 768], | |
size=[384, 384], | |
hooks=[2, 5, 8, 11], | |
vit_features=768, | |
use_readout="ignore", | |
start_index=1, | |
): | |
pretrained = nn.Module() | |
pretrained.model = model | |
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) | |
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) | |
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) | |
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) | |
pretrained.activations = activations | |
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) | |
# 32, 48, 136, 384 | |
pretrained.act_postprocess1 = nn.Sequential( | |
readout_oper[0], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[0], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.ConvTranspose2d( | |
in_channels=features[0], | |
out_channels=features[0], | |
kernel_size=4, | |
stride=4, | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
), | |
) | |
pretrained.act_postprocess2 = nn.Sequential( | |
readout_oper[1], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[1], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.ConvTranspose2d( | |
in_channels=features[1], | |
out_channels=features[1], | |
kernel_size=2, | |
stride=2, | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
), | |
) | |
pretrained.act_postprocess3 = nn.Sequential( | |
readout_oper[2], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[2], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
) | |
pretrained.act_postprocess4 = nn.Sequential( | |
readout_oper[3], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[3], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.Conv2d( | |
in_channels=features[3], | |
out_channels=features[3], | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
), | |
) | |
pretrained.model.start_index = start_index | |
pretrained.model.patch_size = [16, 16] | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | |
pretrained.model._resize_pos_embed = types.MethodType( | |
_resize_pos_embed, pretrained.model | |
) | |
return pretrained | |
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) | |
hooks = [5, 11, 17, 23] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, | |
features=[256, 512, 1024, 1024], | |
hooks=hooks, | |
vit_features=1024, | |
use_readout=use_readout, | |
) | |
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) | |
hooks = [2, 5, 8, 11] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout | |
) | |
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) | |
hooks = [2, 5, 8, 11] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout | |
) | |
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model( | |
"vit_deit_base_distilled_patch16_384", pretrained=pretrained | |
) | |
hooks = [2, 5, 8, 11] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, | |
features=[96, 192, 384, 768], | |
hooks=hooks, | |
use_readout=use_readout, | |
start_index=2, | |
) | |
def _make_vit_b_rn50_backbone( | |
model, | |
features=[256, 512, 768, 768], | |
size=[384, 384], | |
hooks=[0, 1, 8, 11], | |
vit_features=768, | |
use_vit_only=False, | |
use_readout="ignore", | |
start_index=1, | |
): | |
pretrained = nn.Module() | |
pretrained.model = model | |
if use_vit_only == True: | |
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) | |
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) | |
else: | |
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( | |
get_activation("1") | |
) | |
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( | |
get_activation("2") | |
) | |
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) | |
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) | |
pretrained.activations = activations | |
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) | |
if use_vit_only == True: | |
pretrained.act_postprocess1 = nn.Sequential( | |
readout_oper[0], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[0], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.ConvTranspose2d( | |
in_channels=features[0], | |
out_channels=features[0], | |
kernel_size=4, | |
stride=4, | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
), | |
) | |
pretrained.act_postprocess2 = nn.Sequential( | |
readout_oper[1], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[1], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.ConvTranspose2d( | |
in_channels=features[1], | |
out_channels=features[1], | |
kernel_size=2, | |
stride=2, | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
), | |
) | |
else: | |
pretrained.act_postprocess1 = nn.Sequential( | |
nn.Identity(), nn.Identity(), nn.Identity() | |
) | |
pretrained.act_postprocess2 = nn.Sequential( | |
nn.Identity(), nn.Identity(), nn.Identity() | |
) | |
pretrained.act_postprocess3 = nn.Sequential( | |
readout_oper[2], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[2], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
) | |
pretrained.act_postprocess4 = nn.Sequential( | |
readout_oper[3], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[3], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.Conv2d( | |
in_channels=features[3], | |
out_channels=features[3], | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
), | |
) | |
pretrained.model.start_index = start_index | |
pretrained.model.patch_size = [16, 16] | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model._resize_pos_embed = types.MethodType( | |
_resize_pos_embed, pretrained.model | |
) | |
return pretrained | |
def _make_pretrained_vitb_rn50_384( | |
pretrained, use_readout="ignore", hooks=None, use_vit_only=False | |
): | |
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) | |
hooks = [0, 1, 8, 11] if hooks == None else hooks | |
return _make_vit_b_rn50_backbone( | |
model, | |
features=[256, 512, 768, 768], | |
size=[384, 384], | |
hooks=hooks, | |
use_vit_only=use_vit_only, | |
use_readout=use_readout, | |
) | |