Live2Diff / live2diff /pipeline_stream_animation_depth.py
leoxing1996
add demo
d16b52d
raw
history blame
27.1 kB
import time
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from diffusers import LCMScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import (
retrieve_latents,
)
from einops import rearrange
from live2diff.image_filter import SimilarImageFilter
from .animatediff.pipeline import AnimationDepthPipeline
WARMUP_FRAMES = 8
WINDOW_SIZE = 16
class StreamAnimateDiffusionDepth:
def __init__(
self,
pipe: AnimationDepthPipeline,
num_inference_steps: int,
t_index_list: Optional[List[int]] = None,
strength: Optional[float] = None,
torch_dtype: torch.dtype = torch.float16,
width: int = 512,
height: int = 512,
do_add_noise: bool = True,
use_denoising_batch: bool = True,
frame_buffer_size: int = 1,
clip_skip: int = 1,
cfg_type: Literal["none", "full", "self", "initialize"] = "none",
) -> None:
self.device = pipe.device
self.dtype = torch_dtype
self.generator = None
self.height = height
self.width = width
self.pipe = pipe
self.latent_height = int(height // pipe.vae_scale_factor)
self.latent_width = int(width // pipe.vae_scale_factor)
self.clip_skip = clip_skip
self.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
self.scheduler.set_timesteps(num_inference_steps, self.device)
if strength is not None:
t_index_list, timesteps = self.get_timesteps(num_inference_steps, strength, self.device)
print(
f"Generate t_index_list: {t_index_list} via "
f"num_inference_steps: {num_inference_steps}, strength: {strength}"
)
self.timesteps = timesteps
else:
print(
f"t_index_list is passed: {t_index_list}. "
f"Number Inference Steps: {num_inference_steps}, "
f"equivalents to strength {1 - t_index_list[0] / num_inference_steps}."
)
self.timesteps = self.scheduler.timesteps.to(self.device)
self.frame_bff_size = frame_buffer_size
self.denoising_steps_num = len(t_index_list)
self.strength = strength
assert cfg_type == "none", f'cfg_type must be "none" for now, but got {cfg_type}.'
self.cfg_type = cfg_type
if use_denoising_batch:
self.batch_size = self.denoising_steps_num * frame_buffer_size
if self.cfg_type == "initialize":
self.trt_unet_batch_size = (self.denoising_steps_num + 1) * self.frame_bff_size
elif self.cfg_type == "full":
self.trt_unet_batch_size = 2 * self.denoising_steps_num * self.frame_bff_size
else:
self.trt_unet_batch_size = self.denoising_steps_num * frame_buffer_size
else:
self.trt_unet_batch_size = self.frame_bff_size
self.batch_size = frame_buffer_size
self.t_list = t_index_list
self.do_add_noise = do_add_noise
self.use_denoising_batch = use_denoising_batch
self.similar_image_filter = False
self.similar_filter = SimilarImageFilter()
self.prev_image_result = None
self.image_processor = VaeImageProcessor(pipe.vae_scale_factor)
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.vae = pipe.vae
self.depth_detector = pipe.depth_model
self.inference_time_ema = 0
self.depth_time_ema = 0
self.inference_time_list = []
self.depth_time_list = []
self.mask_shift = 1
self.is_tensorrt = False
def prepare_cache(self, height, width, denoising_steps_num):
kv_cache_list = self.pipe.prepare_cache(
height=height,
width=width,
denoising_steps_num=denoising_steps_num,
)
self.pipe.prepare_warmup_unet(height=height, width=width, unet=self.unet_warmup)
self.kv_cache_list = kv_cache_list
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:].to(device)
t_index = list(range(len(timesteps)))
return t_index, timesteps
def load_lora(
self,
pretrained_lora_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
adapter_name: Optional[Any] = None,
**kwargs,
) -> None:
self.pipe.load_lora_weights(
pretrained_lora_model_name_or_path_or_dict,
adapter_name,
**kwargs,
)
def fuse_lora(
self,
fuse_unet: bool = True,
fuse_text_encoder: bool = True,
lora_scale: float = 1.0,
safe_fusing: bool = False,
) -> None:
self.pipe.fuse_lora(
fuse_unet=fuse_unet,
fuse_text_encoder=fuse_text_encoder,
lora_scale=lora_scale,
safe_fusing=safe_fusing,
)
def enable_similar_image_filter(
self,
threshold: float = 0.98,
max_skip_frame: float = 10,
) -> None:
self.similar_image_filter = True
self.similar_filter.set_threshold(threshold)
self.similar_filter.set_max_skip_frame(max_skip_frame)
def disable_similar_image_filter(self) -> None:
self.similar_image_filter = False
@torch.no_grad()
def prepare(
self,
warmup_frames: torch.Tensor,
prompt: str,
negative_prompt: str = "",
guidance_scale: float = 1.2,
delta: float = 1.0,
generator: Optional[torch.Generator] = None,
seed: int = 2,
) -> None:
"""
Forward warm-up frames and fill the buffer
images: [warmup_size, 3, h, w] in [0, 1]
"""
if generator is None:
self.generator = torch.Generator(device=self.device)
self.generator.manual_seed(seed)
else:
self.generator = generator
# initialize x_t_latent (it can be any random tensor)
if self.denoising_steps_num > 1:
self.x_t_latent_buffer = torch.zeros(
(
(self.denoising_steps_num - 1) * self.frame_bff_size,
4,
1, # for video
self.latent_height,
self.latent_width,
),
dtype=self.dtype,
device=self.device,
)
self.depth_latent_buffer = torch.zeros_like(self.x_t_latent_buffer)
else:
self.x_t_latent_buffer = None
self.depth_latent_buffer = None
self.attn_bias, self.pe_idx, self.update_idx = self.initialize_attn_bias_pe_and_update_idx()
if self.cfg_type == "none":
self.guidance_scale = 1.0
else:
self.guidance_scale = guidance_scale
self.delta = delta
do_classifier_free_guidance = False
if self.guidance_scale > 1.0:
do_classifier_free_guidance = True
encoder_output = self.pipe._encode_prompt(
prompt=prompt,
device=self.device,
num_videos_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
clip_skip=self.clip_skip,
)
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)
if self.use_denoising_batch and self.cfg_type == "full":
uncond_prompt_embeds = encoder_output[1].repeat(self.batch_size, 1, 1)
elif self.cfg_type == "initialize":
uncond_prompt_embeds = encoder_output[1].repeat(self.frame_bff_size, 1, 1)
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize" or self.cfg_type == "full"):
self.prompt_embeds = torch.cat([uncond_prompt_embeds, self.prompt_embeds], dim=0)
# make sub timesteps list based on the indices in the t_list list and the values in the timesteps list
self.sub_timesteps = []
for t in self.t_list:
self.sub_timesteps.append(self.timesteps[t])
sub_timesteps_tensor = torch.tensor(self.sub_timesteps, dtype=torch.long, device=self.device)
self.sub_timesteps_tensor = torch.repeat_interleave(
sub_timesteps_tensor,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
self.init_noise = torch.randn(
(self.batch_size, 4, WARMUP_FRAMES, self.latent_height, self.latent_width),
generator=generator,
).to(device=self.device, dtype=self.dtype)
self.stock_noise = torch.zeros_like(self.init_noise)
c_skip_list = []
c_out_list = []
for timestep in self.sub_timesteps:
c_skip, c_out = self.scheduler.get_scalings_for_boundary_condition_discrete(timestep)
c_skip_list.append(c_skip)
c_out_list.append(c_out)
self.c_skip = (
torch.stack(c_skip_list).view(len(self.t_list), 1, 1, 1, 1).to(dtype=self.dtype, device=self.device)
)
self.c_out = (
torch.stack(c_out_list).view(len(self.t_list), 1, 1, 1, 1).to(dtype=self.dtype, device=self.device)
)
# print(self.c_skip)
alpha_prod_t_sqrt_list = []
beta_prod_t_sqrt_list = []
for timestep in self.sub_timesteps:
alpha_prod_t_sqrt = self.scheduler.alphas_cumprod[timestep].sqrt()
beta_prod_t_sqrt = (1 - self.scheduler.alphas_cumprod[timestep]).sqrt()
alpha_prod_t_sqrt_list.append(alpha_prod_t_sqrt)
beta_prod_t_sqrt_list.append(beta_prod_t_sqrt)
alpha_prod_t_sqrt = (
torch.stack(alpha_prod_t_sqrt_list)
.view(len(self.t_list), 1, 1, 1, 1)
.to(dtype=self.dtype, device=self.device)
)
beta_prod_t_sqrt = (
torch.stack(beta_prod_t_sqrt_list)
.view(len(self.t_list), 1, 1, 1, 1)
.to(dtype=self.dtype, device=self.device)
)
self.alpha_prod_t_sqrt = torch.repeat_interleave(
alpha_prod_t_sqrt,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
self.beta_prod_t_sqrt = torch.repeat_interleave(
beta_prod_t_sqrt,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
# do warmup
# 1. encode images
warmup_x_list = []
for f in warmup_frames:
x = self.image_processor.preprocess(f, self.height, self.width)
warmup_x_list.append(x.to(device=self.device, dtype=self.dtype))
warmup_x = torch.cat(warmup_x_list, dim=0) # [warmup_size, c, h, w]
warmup_x_t = self.encode_image(warmup_x)
x_t_latent = rearrange(warmup_x_t, "f c h w -> c f h w")[None, ...]
depth_latent = self.encode_depth(warmup_x)
depth_latent = rearrange(depth_latent, "f c h w -> c f h w")[None, ...]
# 2. run warmup denoising
self.unet_warmup = self.unet_warmup.to(device="cuda", dtype=self.dtype)
warmup_prompt = self.prompt_embeds[0:1]
for idx, t in enumerate(self.sub_timesteps_tensor):
t = t.view(1).repeat(x_t_latent.shape[0])
output_t = self.unet_warmup(
x_t_latent,
t,
temporal_attention_mask=None,
depth_sample=depth_latent,
encoder_hidden_states=warmup_prompt,
kv_cache=[cache[idx] for cache in self.kv_cache_list],
return_dict=True,
)
model_pred = output_t["sample"]
x_0_pred = self.scheduler_step_batch(model_pred, x_t_latent, idx)
if idx < len(self.sub_timesteps_tensor) - 1:
# x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred + self.beta_prod_t_sqrt[
idx + 1
] * torch.randn_like(x_0_pred, device=self.device, dtype=self.dtype)
self.unet_warmup = self.unet_warmup.to(device="cpu")
x_0_pred = rearrange(x_0_pred, "b c f h w -> b f c h w")[0] # [f, c, h, w]
denoisied_frame = self.decode_image(x_0_pred)
self.warmup_engine()
return denoisied_frame
def warmup_engine(self):
"""Warmup tensorrt engine."""
if not self.is_tensorrt:
return
print("Warmup TensorRT engine.")
pseudo_latent = self.init_noise[:, :, 0:1, ...]
for _ in range(self.batch_size):
self.unet(
pseudo_latent,
self.sub_timesteps_tensor,
depth_sample=pseudo_latent,
encoder_hidden_states=self.prompt_embeds,
temporal_attention_mask=self.attn_bias,
kv_cache=self.kv_cache_list,
pe_idx=self.pe_idx,
update_idx=self.update_idx,
return_dict=True,
)
print("Warmup TensorRT engine finished.")
@torch.no_grad()
def update_prompt(self, prompt: str) -> None:
encoder_output = self.pipe._encode_prompt(
prompt=prompt,
device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
)
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
t_index: int,
) -> torch.Tensor:
noisy_samples = self.alpha_prod_t_sqrt[t_index] * original_samples + self.beta_prod_t_sqrt[t_index] * noise
return noisy_samples
def scheduler_step_batch(
self,
model_pred_batch: torch.Tensor,
x_t_latent_batch: torch.Tensor,
idx: Optional[int] = None,
) -> torch.Tensor:
# TODO: use t_list to select beta_prod_t_sqrt
if idx is None:
F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt * model_pred_batch) / self.alpha_prod_t_sqrt
denoised_batch = self.c_out * F_theta + self.c_skip * x_t_latent_batch
else:
F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt[idx] * model_pred_batch) / self.alpha_prod_t_sqrt[idx]
denoised_batch = self.c_out[idx] * F_theta + self.c_skip[idx] * x_t_latent_batch
return denoised_batch
def initialize_attn_bias_pe_and_update_idx(self):
attn_mask = torch.zeros((self.denoising_steps_num, WINDOW_SIZE), dtype=torch.bool, device=self.device)
attn_mask[:, :WARMUP_FRAMES] = True
attn_mask[0, WARMUP_FRAMES] = True
attn_bias = torch.zeros_like(attn_mask, dtype=self.dtype)
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
pe_idx = torch.arange(WINDOW_SIZE).unsqueeze(0).repeat(self.denoising_steps_num, 1).cuda()
update_idx = torch.ones(self.denoising_steps_num, dtype=torch.int64, device=self.device) * WARMUP_FRAMES
update_idx[1] = WARMUP_FRAMES + 1
return attn_bias, pe_idx, update_idx
def update_attn_bias(self, attn_bias, pe_idx, update_idx):
"""
attn_bias: (timesteps, prev_len), init value: [[0, 0, 0, inf], [0, 0, inf, inf]]
pe_idx: (timesteps, prev_len), init value: [[0, 1, 2, 3], [0, 1, 2, 3]]
update_idx: (timesteps, ), init value: [2, 1]
"""
for idx in range(self.denoising_steps_num):
# update pe_idx and update_idx based on attn_bias from last iteration
if torch.isinf(attn_bias[idx]).any():
# some position not filled, do not change pe
# some position not filled, fill the last position
update_idx[idx] = (attn_bias[idx] == 0).sum()
else:
# all position are filled, roll pe
pe_idx[idx, WARMUP_FRAMES:] = pe_idx[idx, WARMUP_FRAMES:].roll(shifts=1, dims=0)
# all position are filled, fill the position with largest PE
update_idx[idx] = pe_idx[idx].argmax()
num_unmask = (attn_bias[idx] == 0).sum()
attn_bias[idx, : min(num_unmask + 1, WINDOW_SIZE)] = 0
return attn_bias, pe_idx, update_idx
def unet_step(
self,
x_t_latent: torch.Tensor,
depth_latent: torch.Tensor,
t_list: Union[torch.Tensor, list[int]],
idx: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
x_t_latent_plus_uc = torch.concat([x_t_latent[0:1], x_t_latent], dim=0)
t_list = torch.concat([t_list[0:1], t_list], dim=0)
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
x_t_latent_plus_uc = torch.concat([x_t_latent, x_t_latent], dim=0)
t_list = torch.concat([t_list, t_list], dim=0)
else:
x_t_latent_plus_uc = x_t_latent
output = self.unet(
x_t_latent_plus_uc,
t_list,
depth_sample=depth_latent,
encoder_hidden_states=self.prompt_embeds,
temporal_attention_mask=self.attn_bias,
kv_cache=self.kv_cache_list,
pe_idx=self.pe_idx,
update_idx=self.update_idx,
return_dict=True,
)
model_pred = output["sample"]
kv_cache_list = output["kv_cache"]
self.kv_cache_list = kv_cache_list
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
noise_pred_text = model_pred[1:]
self.stock_noise = torch.concat(
[model_pred[0:1], self.stock_noise[1:]], dim=0
) # ここコメントアウトでself out cfg
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
noise_pred_uncond, noise_pred_text = model_pred.chunk(2)
else:
noise_pred_text = model_pred
if self.guidance_scale > 1.0 and (self.cfg_type == "self" or self.cfg_type == "initialize"):
noise_pred_uncond = self.stock_noise * self.delta
if self.guidance_scale > 1.0 and self.cfg_type != "none":
model_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
model_pred = noise_pred_text
# compute the previous noisy sample x_t -> x_t-1
if self.use_denoising_batch:
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
if self.cfg_type == "self" or self.cfg_type == "initialize":
scaled_noise = self.beta_prod_t_sqrt * self.stock_noise
delta_x = self.scheduler_step_batch(model_pred, scaled_noise, idx)
alpha_next = torch.concat(
[
self.alpha_prod_t_sqrt[1:],
torch.ones_like(self.alpha_prod_t_sqrt[0:1]),
],
dim=0,
)
delta_x = alpha_next * delta_x
beta_next = torch.concat(
[
self.beta_prod_t_sqrt[1:],
torch.ones_like(self.beta_prod_t_sqrt[0:1]),
],
dim=0,
)
delta_x = delta_x / beta_next
init_noise = torch.concat([self.init_noise[1:], self.init_noise[0:1]], dim=0)
self.stock_noise = init_noise + delta_x
else:
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
return denoised_batch, model_pred
def encode_image(self, image_tensors: torch.Tensor) -> torch.Tensor:
"""
image_tensors: [f, c, h, w]
"""
# num_frames = image_tensors.shape[2]
image_tensors = image_tensors.to(
device=self.device,
dtype=self.vae.dtype,
)
img_latent = retrieve_latents(self.vae.encode(image_tensors), self.generator)
img_latent = img_latent * self.vae.config.scaling_factor
noise = torch.randn(
img_latent.shape,
device=img_latent.device,
dtype=img_latent.dtype,
generator=self.generator,
)
x_t_latent = self.add_noise(img_latent, noise, 0)
return x_t_latent
def decode_image(self, x_0_pred_out: torch.Tensor) -> torch.Tensor:
"""
x_0_pred: [f, c, h, w]
"""
output_latent = self.vae.decode(x_0_pred_out / self.vae.config.scaling_factor, return_dict=False)[0]
return output_latent.clip(-1, 1)
def encode_depth(self, image_tensors: torch.Tensor) -> Tuple[torch.Tensor]:
"""
image_tensor: [f, c, h, w], [-1, 1]
"""
image_tensors = image_tensors.to(
device=self.device,
dtype=self.depth_detector.dtype,
)
# depth_map = self.depth_detector(image_tensors)
# depth_map_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
# depth_map_norm = depth_map_norm[:, None].repeat(1, 3, 1, 1) * 2 - 1
# depth_latent = retrieve_latents(self.vae.encode(depth_map_norm.to(dtype=self.vae.dtype)), self.generator)
# depth_latent = depth_latent * self.vae.config.scaling_factor
# return depth_latent
# preprocess
h, w = image_tensors.shape[2], image_tensors.shape[3]
images_input = F.interpolate(image_tensors, (384, 384), mode="bilinear", align_corners=False)
# forward
depth_map = self.depth_detector(images_input)
# postprocess
depth_map_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
depth_map_norm = depth_map_norm[:, None].repeat(1, 3, 1, 1) * 2 - 1
depth_map_norm = F.interpolate(depth_map_norm, (h, w), mode="bilinear", align_corners=False)
# encode
depth_latent = retrieve_latents(self.vae.encode(depth_map_norm.to(dtype=self.vae.dtype)), self.generator)
depth_latent = depth_latent * self.vae.config.scaling_factor
return depth_latent
def predict_x0_batch(self, x_t_latent: torch.Tensor, depth_latent: torch.Tensor) -> torch.Tensor:
prev_latent_batch = self.x_t_latent_buffer
prev_depth_latent_batch = self.depth_latent_buffer
if self.use_denoising_batch:
t_list = self.sub_timesteps_tensor
if self.denoising_steps_num > 1:
x_t_latent = torch.cat((x_t_latent, prev_latent_batch), dim=0)
depth_latent = torch.cat((depth_latent, prev_depth_latent_batch), dim=0)
self.stock_noise = torch.cat((self.init_noise[0:1], self.stock_noise[:-1]), dim=0)
x_0_pred_batch, model_pred = self.unet_step(x_t_latent, depth_latent, t_list)
self.attn_bias, self.pe_idx, self.update_idx = self.update_attn_bias(
self.attn_bias, self.pe_idx, self.update_idx
)
if self.denoising_steps_num > 1:
x_0_pred_out = x_0_pred_batch[-1].unsqueeze(0)
if self.do_add_noise:
# self.x_t_latent_buffer = (
# self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
# + self.beta_prod_t_sqrt[1:] * self.init_noise[1:]
# )
self.x_t_latent_buffer = self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1] + self.beta_prod_t_sqrt[
1:
] * torch.randn_like(x_0_pred_batch[:-1])
else:
self.x_t_latent_buffer = self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
self.depth_latent_buffer = depth_latent[:-1]
else:
x_0_pred_out = x_0_pred_batch
self.x_t_latent_buffer = None
else:
self.init_noise = x_t_latent
for idx, t in enumerate(self.sub_timesteps_tensor):
t = t.view(
1,
).repeat(
self.frame_bff_size,
)
x_0_pred, model_pred = self.unet_step(x_t_latent, depth_latent, t, idx)
if idx < len(self.sub_timesteps_tensor) - 1:
if self.do_add_noise:
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred + self.beta_prod_t_sqrt[
idx + 1
] * torch.randn_like(x_0_pred, device=self.device, dtype=self.dtype)
else:
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred
x_0_pred_out = x_0_pred
return x_0_pred_out
@torch.no_grad()
def __call__(self, x: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> torch.Tensor:
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
x = self.image_processor.preprocess(x, self.height, self.width).to(device=self.device, dtype=self.dtype)
if self.similar_image_filter:
x = self.similar_filter(x)
if x is None:
time.sleep(self.inference_time_ema)
return self.prev_image_result
x_t_latent = self.encode_image(x)
start_depth = torch.cuda.Event(enable_timing=True)
end_depth = torch.cuda.Event(enable_timing=True)
start_depth.record()
depth_latent = self.encode_depth(x)
end_depth.record()
torch.cuda.synchronize()
depth_time = start_depth.elapsed_time(end_depth) / 1000
x_t_latent = x_t_latent.unsqueeze(2)
depth_latent = depth_latent.unsqueeze(2)
x_0_pred_out = self.predict_x0_batch(x_t_latent, depth_latent) # [1, c, 1, h, w]
x_0_pred_out = rearrange(x_0_pred_out, "b c f h w -> (b f) c h w")
x_output = self.decode_image(x_0_pred_out).detach().clone()
self.prev_image_result = x_output
end.record()
torch.cuda.synchronize()
inference_time = start.elapsed_time(end) / 1000
self.inference_time_ema = 0.9 * self.inference_time_ema + 0.1 * inference_time
self.depth_time_ema = 0.9 * self.depth_time_ema + 0.1 * depth_time
self.inference_time_list.append(inference_time)
self.depth_time_list.append(depth_time)
return x_output
def load_warmup_unet(self, config):
unet_warmup = self.pipe.build_warmup_unet(config)
self.unet_warmup = unet_warmup
self.pipe.unet_warmup = unet_warmup
print("Load Warmup UNet.")