Spaces:
Sleeping
Sleeping
File size: 4,929 Bytes
b18cfd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
dependencies = ["torch"]
import torch
from midas.dpt_depth import DPTDepthModel
from midas.midas_net import MidasNet
from midas.midas_net_custom import MidasNet_small
def DPT_Large(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT-Large model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="vitl16_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def DPT_Hybrid(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT-Hybrid model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="vitb_rn50_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def MiDaS(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS v2.1 model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = MidasNet()
if pretrained:
checkpoint = (
"https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def MiDaS_small(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS small model for monocular depth estimation on resource-constrained devices
pretrained (bool): load pretrained weights into model
"""
model = MidasNet_small(None, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True})
if pretrained:
checkpoint = (
"https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small-70d6b9c8.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
def transforms():
import cv2
from torchvision.transforms import Compose
from midas.transforms import Resize, NormalizeImage, PrepareForNet
from midas import transforms
transforms.default_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
384,
384,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
transforms.small_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
256,
256,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
transforms.dpt_transform = Compose(
[
lambda img: {"image": img / 255.0},
Resize(
384,
384,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
PrepareForNet(),
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
]
)
return transforms
|