Upload ask.py
Browse files
ask.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import json
|
2 |
import logging
|
3 |
import os
|
@@ -5,9 +7,10 @@ import queue
|
|
5 |
import urllib.parse
|
6 |
from concurrent.futures import ThreadPoolExecutor
|
7 |
from datetime import datetime
|
|
|
8 |
from functools import partial
|
9 |
from queue import Queue
|
10 |
-
from typing import Any, Dict, Generator, List, Optional, Tuple
|
11 |
|
12 |
import click
|
13 |
import duckdb
|
@@ -17,12 +20,20 @@ from bs4 import BeautifulSoup
|
|
17 |
from dotenv import load_dotenv
|
18 |
from jinja2 import BaseLoader, Environment
|
19 |
from openai import OpenAI
|
20 |
-
from pydantic import BaseModel
|
|
|
|
|
|
|
21 |
|
22 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
23 |
default_env_file = os.path.abspath(os.path.join(script_dir, ".env"))
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
class AskSettings(BaseModel):
|
27 |
date_restrict: int
|
28 |
target_site: str
|
@@ -31,6 +42,8 @@ class AskSettings(BaseModel):
|
|
31 |
url_list: List[str]
|
32 |
inference_model_name: str
|
33 |
hybrid_search: bool
|
|
|
|
|
34 |
|
35 |
|
36 |
def _get_logger(log_level: str) -> logging.Logger:
|
@@ -60,6 +73,36 @@ def _read_url_list(url_list_file: str) -> List[str]:
|
|
60 |
return url_list
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
class Ask:
|
64 |
|
65 |
def __init__(self, logger: Optional[logging.Logger] = None):
|
@@ -411,6 +454,19 @@ CREATE TABLE {table_name} (
|
|
411 |
template = env.from_string(template_str)
|
412 |
return template.render(variables)
|
413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
def run_inference(
|
415 |
self,
|
416 |
query: str,
|
@@ -484,6 +540,74 @@ Here is the context:
|
|
484 |
response_str = completion.choices[0].message.content
|
485 |
return response_str
|
486 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
def run_query_gradio(
|
488 |
self,
|
489 |
query: str,
|
@@ -494,6 +618,8 @@ Here is the context:
|
|
494 |
url_list_str: str,
|
495 |
inference_model_name: str,
|
496 |
hybrid_search: bool,
|
|
|
|
|
497 |
) -> Generator[Tuple[str, str], None, Tuple[str, str]]:
|
498 |
logger = self.logger
|
499 |
log_queue = Queue()
|
@@ -511,6 +637,8 @@ Here is the context:
|
|
511 |
url_list=url_list,
|
512 |
inference_model_name=inference_model_name,
|
513 |
hybrid_search=hybrid_search,
|
|
|
|
|
514 |
)
|
515 |
|
516 |
queue_handler = logging.Handler()
|
@@ -547,47 +675,78 @@ Here is the context:
|
|
547 |
logger.info(f"β
Scraped {len(scrape_results)} URLs.")
|
548 |
yield "", update_logs()
|
549 |
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
|
|
561 |
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
591 |
|
592 |
logs = ""
|
593 |
final_result = ""
|
@@ -618,6 +777,8 @@ Here is the context:
|
|
618 |
url_list_str=url_list_str,
|
619 |
inference_model_name=settings.inference_model_name,
|
620 |
hybrid_search=settings.hybrid_search,
|
|
|
|
|
621 |
):
|
622 |
final_result = result
|
623 |
return final_result
|
@@ -630,6 +791,13 @@ def launch_gradio(
|
|
630 |
logger: logging.Logger,
|
631 |
) -> None:
|
632 |
ask = Ask(logger=logger)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
633 |
with gr.Blocks() as demo:
|
634 |
gr.Markdown("# Ask.py - Web Search-Extract-Summarize")
|
635 |
gr.Markdown(
|
@@ -640,9 +808,22 @@ def launch_gradio(
|
|
640 |
with gr.Column():
|
641 |
|
642 |
query_input = gr.Textbox(label="Query", value=query)
|
643 |
-
|
644 |
-
label="
|
645 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
)
|
647 |
date_restrict_input = gr.Number(
|
648 |
label="Date Restrict (Optional) [0 or empty means no date limit.]",
|
@@ -668,6 +849,10 @@ def launch_gradio(
|
|
668 |
)
|
669 |
|
670 |
with gr.Accordion("More Options", open=False):
|
|
|
|
|
|
|
|
|
671 |
inference_model_name_input = gr.Textbox(
|
672 |
label="Inference Model Name",
|
673 |
value=init_settings.inference_model_name,
|
@@ -690,6 +875,8 @@ def launch_gradio(
|
|
690 |
url_list_input,
|
691 |
inference_model_name_input,
|
692 |
hybrid_search_input,
|
|
|
|
|
693 |
],
|
694 |
outputs=[answer_output, logs_output],
|
695 |
)
|
@@ -699,6 +886,14 @@ def launch_gradio(
|
|
699 |
|
700 |
@click.command(help="Search web for the query and summarize the results.")
|
701 |
@click.option("--query", "-q", required=False, help="Query to search")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
@click.option(
|
703 |
"--date-restrict",
|
704 |
"-d",
|
@@ -735,6 +930,14 @@ def launch_gradio(
|
|
735 |
show_default=True,
|
736 |
help="Instead of doing web search, scrape the target URL list and answer the query based on the content",
|
737 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
738 |
@click.option(
|
739 |
"--inference-model-name",
|
740 |
"-m",
|
@@ -763,11 +966,13 @@ def launch_gradio(
|
|
763 |
)
|
764 |
def search_extract_summarize(
|
765 |
query: str,
|
|
|
766 |
date_restrict: int,
|
767 |
target_site: str,
|
768 |
output_language: str,
|
769 |
output_length: int,
|
770 |
url_list_file: str,
|
|
|
771 |
inference_model_name: str,
|
772 |
hybrid_search: bool,
|
773 |
web_ui: bool,
|
@@ -776,6 +981,9 @@ def search_extract_summarize(
|
|
776 |
load_dotenv(dotenv_path=default_env_file, override=False)
|
777 |
logger = _get_logger(log_level)
|
778 |
|
|
|
|
|
|
|
779 |
settings = AskSettings(
|
780 |
date_restrict=date_restrict,
|
781 |
target_site=target_site,
|
@@ -784,6 +992,8 @@ def search_extract_summarize(
|
|
784 |
url_list=_read_url_list(url_list_file),
|
785 |
inference_model_name=inference_model_name,
|
786 |
hybrid_search=hybrid_search,
|
|
|
|
|
787 |
)
|
788 |
|
789 |
if web_ui or os.environ.get("RUN_GRADIO_UI", "false").lower() != "false":
|
|
|
1 |
+
import csv
|
2 |
+
import io
|
3 |
import json
|
4 |
import logging
|
5 |
import os
|
|
|
7 |
import urllib.parse
|
8 |
from concurrent.futures import ThreadPoolExecutor
|
9 |
from datetime import datetime
|
10 |
+
from enum import Enum
|
11 |
from functools import partial
|
12 |
from queue import Queue
|
13 |
+
from typing import Any, Dict, Generator, List, Optional, Tuple, TypeVar
|
14 |
|
15 |
import click
|
16 |
import duckdb
|
|
|
20 |
from dotenv import load_dotenv
|
21 |
from jinja2 import BaseLoader, Environment
|
22 |
from openai import OpenAI
|
23 |
+
from pydantic import BaseModel, create_model
|
24 |
+
|
25 |
+
TypeVar_BaseModel = TypeVar("TypeVar_BaseModel", bound=BaseModel)
|
26 |
+
|
27 |
|
28 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
29 |
default_env_file = os.path.abspath(os.path.join(script_dir, ".env"))
|
30 |
|
31 |
|
32 |
+
class OutputMode(str, Enum):
|
33 |
+
answer = "answer"
|
34 |
+
extract = "extract"
|
35 |
+
|
36 |
+
|
37 |
class AskSettings(BaseModel):
|
38 |
date_restrict: int
|
39 |
target_site: str
|
|
|
42 |
url_list: List[str]
|
43 |
inference_model_name: str
|
44 |
hybrid_search: bool
|
45 |
+
output_mode: OutputMode
|
46 |
+
extract_schema_str: str
|
47 |
|
48 |
|
49 |
def _get_logger(log_level: str) -> logging.Logger:
|
|
|
73 |
return url_list
|
74 |
|
75 |
|
76 |
+
def _read_extract_schema_str(extract_schema_file: str) -> str:
|
77 |
+
if not extract_schema_file:
|
78 |
+
return ""
|
79 |
+
|
80 |
+
with open(extract_schema_file, "r") as f:
|
81 |
+
schema_str = f.read()
|
82 |
+
return schema_str
|
83 |
+
|
84 |
+
|
85 |
+
def _output_csv(result_dict: Dict[str, List[BaseModel]], key_name: str) -> str:
|
86 |
+
# generate the CSV content from a Dict of URL and list of extracted items
|
87 |
+
output = io.StringIO()
|
88 |
+
csv_writer = None
|
89 |
+
for src_url, items in result_dict.items():
|
90 |
+
for item in items:
|
91 |
+
value_dict = item.model_dump()
|
92 |
+
item_with_url = {**value_dict, key_name: src_url}
|
93 |
+
|
94 |
+
if csv_writer is None:
|
95 |
+
headers = list(value_dict.keys()) + [key_name]
|
96 |
+
csv_writer = csv.DictWriter(output, fieldnames=headers)
|
97 |
+
csv_writer.writeheader()
|
98 |
+
|
99 |
+
csv_writer.writerow(item_with_url)
|
100 |
+
|
101 |
+
csv_content = output.getvalue()
|
102 |
+
output.close()
|
103 |
+
return csv_content
|
104 |
+
|
105 |
+
|
106 |
class Ask:
|
107 |
|
108 |
def __init__(self, logger: Optional[logging.Logger] = None):
|
|
|
454 |
template = env.from_string(template_str)
|
455 |
return template.render(variables)
|
456 |
|
457 |
+
def _get_target_class(self, extract_schema_str: str) -> TypeVar_BaseModel:
|
458 |
+
local_namespace = {"BaseModel": BaseModel}
|
459 |
+
exec(extract_schema_str, local_namespace, local_namespace)
|
460 |
+
for key, value in local_namespace.items():
|
461 |
+
if key == "__builtins__":
|
462 |
+
continue
|
463 |
+
if key == "BaseModel":
|
464 |
+
continue
|
465 |
+
if isinstance(value, type):
|
466 |
+
if issubclass(value, BaseModel):
|
467 |
+
return value
|
468 |
+
raise Exception("No Pydantic schema found in the extract schema str.")
|
469 |
+
|
470 |
def run_inference(
|
471 |
self,
|
472 |
query: str,
|
|
|
540 |
response_str = completion.choices[0].message.content
|
541 |
return response_str
|
542 |
|
543 |
+
def run_extract(
|
544 |
+
self,
|
545 |
+
query: str,
|
546 |
+
extract_schema_str: str,
|
547 |
+
target_content: str,
|
548 |
+
settings: AskSettings,
|
549 |
+
) -> List[TypeVar_BaseModel]:
|
550 |
+
target_class = self._get_target_class(extract_schema_str)
|
551 |
+
system_prompt = (
|
552 |
+
"You are an expert of extract structual information from the document."
|
553 |
+
)
|
554 |
+
user_promt_template = """
|
555 |
+
Given the provided content, if it contains information about {{ query }}, please extract the
|
556 |
+
list of structured data items as defined in the following Pydantic schema:
|
557 |
+
|
558 |
+
{{ extract_schema_str }}
|
559 |
+
|
560 |
+
Below is the provided content:
|
561 |
+
{{ content }}
|
562 |
+
"""
|
563 |
+
user_prompt = self._render_template(
|
564 |
+
user_promt_template,
|
565 |
+
{
|
566 |
+
"query": query,
|
567 |
+
"content": target_content,
|
568 |
+
"extract_schema_str": extract_schema_str,
|
569 |
+
},
|
570 |
+
)
|
571 |
+
|
572 |
+
self.logger.debug(
|
573 |
+
f"Running extraction with model: {settings.inference_model_name}"
|
574 |
+
)
|
575 |
+
self.logger.debug(f"Final user prompt: {user_prompt}")
|
576 |
+
|
577 |
+
class_name = target_class.__name__
|
578 |
+
list_class_name = f"{class_name}_list"
|
579 |
+
response_pydantic_model = create_model(
|
580 |
+
list_class_name,
|
581 |
+
items=(List[target_class], ...),
|
582 |
+
)
|
583 |
+
|
584 |
+
api_client = self._get_api_client()
|
585 |
+
completion = api_client.beta.chat.completions.parse(
|
586 |
+
model=settings.inference_model_name,
|
587 |
+
messages=[
|
588 |
+
{
|
589 |
+
"role": "system",
|
590 |
+
"content": system_prompt,
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"role": "user",
|
594 |
+
"content": user_prompt,
|
595 |
+
},
|
596 |
+
],
|
597 |
+
response_format=response_pydantic_model,
|
598 |
+
)
|
599 |
+
if completion is None:
|
600 |
+
raise Exception("No completion from the API")
|
601 |
+
|
602 |
+
message = completion.choices[0].message
|
603 |
+
if message.refusal:
|
604 |
+
raise Exception(
|
605 |
+
f"Refused to extract information from the document: {message.refusal}."
|
606 |
+
)
|
607 |
+
|
608 |
+
extract_result = message.parsed
|
609 |
+
return extract_result.items
|
610 |
+
|
611 |
def run_query_gradio(
|
612 |
self,
|
613 |
query: str,
|
|
|
618 |
url_list_str: str,
|
619 |
inference_model_name: str,
|
620 |
hybrid_search: bool,
|
621 |
+
output_mode_str: str,
|
622 |
+
extract_schema_str: str,
|
623 |
) -> Generator[Tuple[str, str], None, Tuple[str, str]]:
|
624 |
logger = self.logger
|
625 |
log_queue = Queue()
|
|
|
637 |
url_list=url_list,
|
638 |
inference_model_name=inference_model_name,
|
639 |
hybrid_search=hybrid_search,
|
640 |
+
output_mode=OutputMode(output_mode_str),
|
641 |
+
extract_schema_str=extract_schema_str,
|
642 |
)
|
643 |
|
644 |
queue_handler = logging.Handler()
|
|
|
675 |
logger.info(f"β
Scraped {len(scrape_results)} URLs.")
|
676 |
yield "", update_logs()
|
677 |
|
678 |
+
if settings.output_mode == OutputMode.answer:
|
679 |
+
logger.info("Chunking the text ...")
|
680 |
+
yield "", update_logs()
|
681 |
+
chunking_results = self.chunk_results(scrape_results, 1000, 100)
|
682 |
+
total_chunks = 0
|
683 |
+
for url, chunks in chunking_results.items():
|
684 |
+
logger.debug(f"URL: {url}")
|
685 |
+
total_chunks += len(chunks)
|
686 |
+
for i, chunk in enumerate(chunks):
|
687 |
+
logger.debug(f"Chunk {i+1}: {chunk}")
|
688 |
+
logger.info(f"β
Generated {total_chunks} chunks ...")
|
689 |
+
yield "", update_logs()
|
690 |
|
691 |
+
logger.info(f"Saving {total_chunks} chunks to DB ...")
|
692 |
+
yield "", update_logs()
|
693 |
+
table_name = self.save_chunks_to_db(chunking_results)
|
694 |
+
logger.info(f"β
Successfully embedded and saved chunks to DB.")
|
695 |
+
yield "", update_logs()
|
696 |
|
697 |
+
logger.info("Querying the vector DB to get context ...")
|
698 |
+
matched_chunks = self.vector_search(table_name, query, settings)
|
699 |
+
for i, result in enumerate(matched_chunks):
|
700 |
+
logger.debug(f"{i+1}. {result}")
|
701 |
+
logger.info(f"β
Got {len(matched_chunks)} matched chunks.")
|
702 |
+
yield "", update_logs()
|
703 |
|
704 |
+
logger.info("Running inference with context ...")
|
705 |
+
yield "", update_logs()
|
706 |
+
answer = self.run_inference(
|
707 |
+
query=query,
|
708 |
+
matched_chunks=matched_chunks,
|
709 |
+
settings=settings,
|
710 |
+
)
|
711 |
+
logger.info("β
Finished inference API call.")
|
712 |
+
logger.info("Generating output ...")
|
713 |
+
yield "", update_logs()
|
714 |
|
715 |
+
answer = f"# Answer\n\n{answer}\n"
|
716 |
+
references = "\n".join(
|
717 |
+
[
|
718 |
+
f"[{i+1}] {result['url']}"
|
719 |
+
for i, result in enumerate(matched_chunks)
|
720 |
+
]
|
721 |
+
)
|
722 |
+
yield f"{answer}\n\n# References\n\n{references}", update_logs()
|
723 |
+
elif settings.output_mode == OutputMode.extract:
|
724 |
+
logger.info("Extracting structured data ...")
|
725 |
+
yield "", update_logs()
|
726 |
+
|
727 |
+
aggregated_output = {}
|
728 |
+
for url, text in scrape_results.items():
|
729 |
+
items = self.run_extract(
|
730 |
+
query=query,
|
731 |
+
extract_schema_str=extract_schema_str,
|
732 |
+
target_content=text,
|
733 |
+
settings=settings,
|
734 |
+
)
|
735 |
+
self.logger.info(
|
736 |
+
f"β
Finished inference API call. Extracted {len(items)} items from {url}."
|
737 |
+
)
|
738 |
+
yield "", update_logs()
|
739 |
+
|
740 |
+
self.logger.debug(items)
|
741 |
+
aggregated_output[url] = items
|
742 |
+
|
743 |
+
logger.info("β
Finished extraction from all urls.")
|
744 |
+
logger.info("Generating output ...")
|
745 |
+
yield "", update_logs()
|
746 |
+
answer = _output_csv(aggregated_output, "SourceURL")
|
747 |
+
yield f"{answer}", update_logs()
|
748 |
+
else:
|
749 |
+
raise Exception(f"Invalid output mode: {settings.output_mode}")
|
750 |
|
751 |
logs = ""
|
752 |
final_result = ""
|
|
|
777 |
url_list_str=url_list_str,
|
778 |
inference_model_name=settings.inference_model_name,
|
779 |
hybrid_search=settings.hybrid_search,
|
780 |
+
output_mode_str=settings.output_mode,
|
781 |
+
extract_schema_str=settings.extract_schema_str,
|
782 |
):
|
783 |
final_result = result
|
784 |
return final_result
|
|
|
791 |
logger: logging.Logger,
|
792 |
) -> None:
|
793 |
ask = Ask(logger=logger)
|
794 |
+
|
795 |
+
def toggle_schema_textbox(option):
|
796 |
+
if option == "extract":
|
797 |
+
return gr.update(visible=True)
|
798 |
+
else:
|
799 |
+
return gr.update(visible=False)
|
800 |
+
|
801 |
with gr.Blocks() as demo:
|
802 |
gr.Markdown("# Ask.py - Web Search-Extract-Summarize")
|
803 |
gr.Markdown(
|
|
|
808 |
with gr.Column():
|
809 |
|
810 |
query_input = gr.Textbox(label="Query", value=query)
|
811 |
+
output_mode_input = gr.Radio(
|
812 |
+
label="Output Mode [answer: simple answer, extract: get structured data]",
|
813 |
+
choices=["answer", "extract"],
|
814 |
+
value=init_settings.output_mode,
|
815 |
+
)
|
816 |
+
extract_schema_input = gr.Textbox(
|
817 |
+
label="Extract Pydantic Schema",
|
818 |
+
visible=(init_settings.output_mode == "extract"),
|
819 |
+
value=init_settings.extract_schema_str,
|
820 |
+
lines=5,
|
821 |
+
max_lines=20,
|
822 |
+
)
|
823 |
+
output_mode_input.change(
|
824 |
+
fn=toggle_schema_textbox,
|
825 |
+
inputs=output_mode_input,
|
826 |
+
outputs=extract_schema_input,
|
827 |
)
|
828 |
date_restrict_input = gr.Number(
|
829 |
label="Date Restrict (Optional) [0 or empty means no date limit.]",
|
|
|
849 |
)
|
850 |
|
851 |
with gr.Accordion("More Options", open=False):
|
852 |
+
hybrid_search_input = gr.Checkbox(
|
853 |
+
label="Hybrid Search [Use both vector search and full-text search.]",
|
854 |
+
value=init_settings.hybrid_search,
|
855 |
+
)
|
856 |
inference_model_name_input = gr.Textbox(
|
857 |
label="Inference Model Name",
|
858 |
value=init_settings.inference_model_name,
|
|
|
875 |
url_list_input,
|
876 |
inference_model_name_input,
|
877 |
hybrid_search_input,
|
878 |
+
output_mode_input,
|
879 |
+
extract_schema_input,
|
880 |
],
|
881 |
outputs=[answer_output, logs_output],
|
882 |
)
|
|
|
886 |
|
887 |
@click.command(help="Search web for the query and summarize the results.")
|
888 |
@click.option("--query", "-q", required=False, help="Query to search")
|
889 |
+
@click.option(
|
890 |
+
"--output-mode",
|
891 |
+
"-o",
|
892 |
+
type=click.Choice(["answer", "extract"], case_sensitive=False),
|
893 |
+
default="answer",
|
894 |
+
required=False,
|
895 |
+
help="Output mode for the answer, default is a simple answer",
|
896 |
+
)
|
897 |
@click.option(
|
898 |
"--date-restrict",
|
899 |
"-d",
|
|
|
930 |
show_default=True,
|
931 |
help="Instead of doing web search, scrape the target URL list and answer the query based on the content",
|
932 |
)
|
933 |
+
@click.option(
|
934 |
+
"--extract-schema-file",
|
935 |
+
type=str,
|
936 |
+
required=False,
|
937 |
+
default="",
|
938 |
+
show_default=True,
|
939 |
+
help="Pydantic schema for the extract mode",
|
940 |
+
)
|
941 |
@click.option(
|
942 |
"--inference-model-name",
|
943 |
"-m",
|
|
|
966 |
)
|
967 |
def search_extract_summarize(
|
968 |
query: str,
|
969 |
+
output_mode: str,
|
970 |
date_restrict: int,
|
971 |
target_site: str,
|
972 |
output_language: str,
|
973 |
output_length: int,
|
974 |
url_list_file: str,
|
975 |
+
extract_schema_file: str,
|
976 |
inference_model_name: str,
|
977 |
hybrid_search: bool,
|
978 |
web_ui: bool,
|
|
|
981 |
load_dotenv(dotenv_path=default_env_file, override=False)
|
982 |
logger = _get_logger(log_level)
|
983 |
|
984 |
+
if output_mode == "extract" and not extract_schema_file:
|
985 |
+
raise Exception("Extract mode requires the --extract-schema-file argument.")
|
986 |
+
|
987 |
settings = AskSettings(
|
988 |
date_restrict=date_restrict,
|
989 |
target_site=target_site,
|
|
|
992 |
url_list=_read_url_list(url_list_file),
|
993 |
inference_model_name=inference_model_name,
|
994 |
hybrid_search=hybrid_search,
|
995 |
+
output_mode=OutputMode(output_mode),
|
996 |
+
extract_schema_str=_read_extract_schema_str(extract_schema_file),
|
997 |
)
|
998 |
|
999 |
if web_ui or os.environ.get("RUN_GRADIO_UI", "false").lower() != "false":
|