Spaces:
Running
Running
import os | |
import base64 | |
import numpy as np | |
from PIL import Image | |
import io | |
import requests | |
import replicate | |
from flask import Flask, request | |
import gradio as gr | |
import openai | |
from openai import OpenAI | |
from dotenv import load_dotenv, find_dotenv | |
import json | |
# Locate the .env file | |
dotenv_path = find_dotenv() | |
load_dotenv(dotenv_path) | |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN') | |
client = OpenAI() | |
def main(img, strength): | |
mask = img['layers'][0] | |
# Match prompt strength from .4 to 1 (total destruction) | |
prompt_strength = round(-0.6 * strength + 1, 2) | |
base_image = Image.fromarray(img['background'].astype('uint8')) | |
img_base_64 = img_to_base64(base_image) | |
if is_transparent(mask) == True: | |
mask_base_64 = None | |
else: | |
mask_img = create_mask_image(mask) | |
mask_base_64 = img_to_base64(mask_img) | |
prompt = call_openai(img_base_64) | |
#prompt = "The image shows a person wearing sleek, over-ear headphones with a matte finish and a cool, light beige color (Pantone 7527 C), captured under soft, diffused natural lighting, emphasizing the smooth and minimalist design of the headphones." | |
output_urls = generate_image(prompt, img_base_64, mask_base_64, prompt_strength) | |
output_images = [download_image(url) for url in output_urls[3:]] # Start from the 4th image | |
return output_images | |
def generate_image(prompt, img, mask, prompt_strength): | |
input_data = { | |
"image": img, | |
"prompt": prompt + " expensive", | |
"refine": "no_refiner", | |
"scheduler": "K_EULER", | |
"lora_scale": 0.8, | |
"num_outputs": 4, | |
"controlnet_1": "edge_canny", | |
"controlnet_2": "depth_midas", | |
"controlnet_3": "lineart", | |
"guidance_scale": 4, | |
"apply_watermark": False, | |
"negative_prompt":"worst quality, low quality, illustration, 2d, painting, cartoons, sketch, logo", | |
"prompt_strength": prompt_strength, | |
"sizing_strategy": "controlnet_1_image", | |
"controlnet_1_end": 1, | |
"controlnet_2_end": 1, | |
"controlnet_3_end": 1, | |
"controlnet_1_image": img, | |
"controlnet_1_start": 0, | |
"controlnet_2_image": img, | |
"controlnet_2_start": 0, | |
"controlnet_3_image": img, | |
"controlnet_3_start": 0, | |
"num_inference_steps": 30, | |
"controlnet_1_conditioning_scale": 0.8, | |
"controlnet_2_conditioning_scale": 0.8, | |
"controlnet_3_conditioning_scale": 0.75 | |
} | |
if mask is not None: | |
input_data["mask"] = mask | |
else: | |
input_data["prompt_strength"] = .3 | |
output = replicate.run( | |
"fofr/realvisxl-v3-multi-controlnet-lora:90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade", | |
input=input_data | |
) | |
return output | |
def download_image(url): | |
response = requests.get(url) | |
img = Image.open(io.BytesIO(response.content)) | |
return img | |
def create_mask_image(mask_array): | |
# Convert the mask to a numpy array if it's not already | |
if not isinstance(mask_array, np.ndarray): | |
mask_array = np.array(mask_array) | |
# Create a new array with the same shape as the mask, but only for RGB channels | |
processed_mask = np.zeros((mask_array.shape[0], mask_array.shape[1], 3), dtype=np.uint8) | |
# Set transparent parts (alpha=0) to black (0, 0, 0) | |
transparent_mask = mask_array[:, :, 3] == 0 | |
processed_mask[transparent_mask] = [0, 0, 0] | |
# Set black parts (RGB=0, 0, 0 and alpha=255) to white (255, 255, 255) | |
black_mask = (mask_array[:, :, :3] == [0, 0, 0]).all(axis=2) & (mask_array[:, :, 3] == 255) | |
processed_mask[black_mask] = [255, 255, 255] | |
return Image.fromarray(processed_mask) | |
def is_transparent(mask_array): | |
return np.all(mask_array[:, :, 3] == 0) | |
def img_to_base64(img): | |
# Extract the format of the image (e.g., JPEG, PNG) | |
img_format = img.format if img.format else "PNG" | |
# Convert the image to bytes | |
buffered = io.BytesIO() | |
img.save(buffered, format=img_format) | |
img_base_64 = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
return f"data:image/{img_format.lower()};base64," + img_base_64 | |
def call_openai(image_data): | |
try: | |
response = client.chat.completions.create( | |
model="gpt-4o", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "Please describe this image in one sentence, with a focus on the material, finish and specific color (color is really important, so provide specific pantone colors), whether the color is warm or cool, and details of the main object in the scene. Mention the type of lighting as well."}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": image_data, | |
}, | |
}, | |
], | |
} | |
], | |
max_tokens=300, | |
) | |
return response.choices[0].message.content | |
except openai.BadRequestError as e: | |
print(e) | |
print("e type") | |
print(type(e)) | |
raise gr.Error(f"You uploaded an unsupported image. Please make sure your image is below 20 MB in size and is of one the following formats: ['png', 'jpeg', 'gif', 'webp']") | |
except Exception as e: | |
raise gr.Error("Unknown Error") | |
# Define the brush with only black color | |
black_brush = gr.Brush(colors=["#000000"], default_color="#000000", color_mode="fixed") | |
# Using the ImageEditor component to enable drawing on the image with limited colors | |
demo = gr.Interface( | |
fn=main, | |
inputs=[gr.ImageEditor(brush=black_brush), gr.Slider(0, 1, step=0.025, value=0.5, label="Image Strength")], | |
#outputs=[gr.Image(type="pil"), gr.Image(type="pil"), gr.Image(type="pil"), gr.Image(type="pil")] | |
outputs=["image", "image", "image", "image"] | |
) | |
demo.launch(share=False) | |