File size: 7,000 Bytes
0700e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a367e0e
3200a97
 
 
0700e3b
a367e0e
 
 
 
 
0700e3b
6f1f6df
 
 
0700e3b
 
a367e0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200a97
 
 
 
 
a367e0e
 
0700e3b
3200a97
 
a367e0e
3200a97
 
 
6f1f6df
0700e3b
6f1f6df
0700e3b
 
 
 
6f1f6df
0700e3b
 
a367e0e
0700e3b
 
 
 
 
 
 
6f1f6df
0700e3b
6f1f6df
 
0700e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1f6df
0700e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1f6df
0700e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200a97
6f1f6df
0700e3b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import base64
import numpy as np
from PIL import Image
import io
import requests

import replicate
import gradio as gr

import openai
from openai import OpenAI

from dotenv import load_dotenv, find_dotenv

# Locate the .env file
dotenv_path = find_dotenv()

load_dotenv(dotenv_path)

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN')

client = OpenAI()

def main(img, strength, prompt):
    print(prompt)

    
    mask = img['layers'][0]
    if is_transparent(mask) == True:
        mask_img = None
    else:
        mask_img = create_mask_image(mask)
        

    # Match prompt strength from .4 to 1 (total destruction)
    prompt_strength = round(-0.6 * strength + 1, 2)

    base_image = Image.fromarray(img['background'].astype('uint8'))

    # Resize the starter image if either dimension is larger than 768 pixels
    if base_image.size[0] > 768 or base_image.size[1] > 768:
        # Calculate the new size while maintaining the aspect ratio
        if base_image.size[0] > base_image.size[1]:
            # Width is larger than height
            new_width = 768
            new_height = int((768 / base_image.size[0]) * base_image.size[1])
        else:
            # Height is larger than width
            new_height = 768
            new_width = int((768 / base_image.size[1]) * base_image.size[0])
        
        # Resize the image
        base_image = base_image.resize((new_width, new_height), Image.LANCZOS)
        if mask_img is not None:
            mask_img = mask_img.resize((new_width, new_height), Image.LANCZOS)
    
    if mask_img is not None:
        mask_base_64 = img_to_base64(mask_img)
    else:
        mask_base_64 = None

    img_base_64 = img_to_base64(base_image)

    
    # Todo -- send just the masked out part to gpt
    prompt = prompt
    if prompt == "":
        prompt = call_openai(img_base_64)
        
    #prompt = "The image shows a person wearing sleek, over-ear headphones with a matte finish and a cool, light beige color (Pantone 7527 C), captured under soft, diffused natural lighting, emphasizing the smooth and minimalist design of the headphones."

    output_urls = generate_image(prompt, img_base_64, mask_base_64, prompt_strength)
    output_images = [download_image(url) for url in output_urls[3:]]  # Start from the 4th image

    return output_images

def generate_image(prompt, img, mask, prompt_strength):
    input_data = {
        "image": img,
        "prompt": prompt,
        "refine": "no_refiner",
        "scheduler": "K_EULER",
        "lora_scale": 0.8,
        "num_outputs": 4,
        "controlnet_1": "edge_canny",
        "controlnet_2": "depth_midas",
        "controlnet_3": "lineart",
        "guidance_scale": 4,
        "apply_watermark": False,
        "negative_prompt":"worst quality, low quality, illustration, 2d, painting, cartoons, sketch, logo",
        "prompt_strength": prompt_strength,
        "sizing_strategy": "controlnet_1_image",
        "controlnet_1_end": 1,
        "controlnet_2_end": 1,
        "controlnet_3_end": 1,
        "controlnet_1_image": img,
        "controlnet_1_start": 0,
        "controlnet_2_image": img,
        "controlnet_2_start": 0,
        "controlnet_3_image": img,
        "controlnet_3_start": 0,
        "num_inference_steps": 30,
        "controlnet_1_conditioning_scale": 0.8,
        "controlnet_2_conditioning_scale": 0.8,
        "controlnet_3_conditioning_scale": 0.75
    }

    if mask is not None:
        input_data["mask"] = mask
    else:
        input_data["prompt_strength"] = .3

    output = replicate.run(
        "fofr/realvisxl-v3-multi-controlnet-lora:90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade",
        input=input_data
    )

    return output

def download_image(url):
    response = requests.get(url)
    img = Image.open(io.BytesIO(response.content))
    return img

def create_mask_image(mask_array):
    # Convert the mask to a numpy array if it's not already
    if not isinstance(mask_array, np.ndarray):
        mask_array = np.array(mask_array)
    
    # Create a new array with the same shape as the mask, but only for RGB channels
    processed_mask = np.zeros((mask_array.shape[0], mask_array.shape[1], 3), dtype=np.uint8)
    
    # Set transparent parts (alpha=0) to black (0, 0, 0)
    transparent_mask = mask_array[:, :, 3] == 0
    processed_mask[transparent_mask] = [0, 0, 0]
    
    # Set black parts (RGB=0, 0, 0 and alpha=255) to white (255, 255, 255)
    black_mask = (mask_array[:, :, :3] == [0, 0, 0]).all(axis=2) & (mask_array[:, :, 3] == 255)
    processed_mask[black_mask] = [255, 255, 255]
    
    return Image.fromarray(processed_mask)

def is_transparent(mask_array):
    return np.all(mask_array[:, :, 3] == 0)

def img_to_base64(img):
    # Extract the format of the image (e.g., JPEG, PNG)
    img_format = img.format if img.format else "PNG"
    
    # Convert the image to bytes
    buffered = io.BytesIO()
    img.save(buffered, format=img_format)
    img_base_64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
    return f"data:image/{img_format.lower()};base64," + img_base_64

def call_openai(image_data):
    try:
        response = client.chat.completions.create(
            model="gpt-4o",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Please describe this image in one sentence, with a focus on the material, finish and specific color (color is really important, so provide specific pantone colors), whether the color is warm or cool, and details of the main object in the scene. Mention the type of lighting as well."},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": image_data,
                            },
                        },
                    ],
                }
            ],
            max_tokens=300,
        )
        return response.choices[0].message.content
    except openai.BadRequestError as e:
        print(e)
        print("e type")
        print(type(e))
        raise gr.Error(f"You uploaded an unsupported image. Please make sure your image is below 20 MB in size and is of one the following formats: ['png', 'jpeg', 'gif', 'webp']")
    except Exception as e:
        raise gr.Error("Unknown Error")

# Define the brush with only black color
black_brush = gr.Brush(colors=["#000000"], default_color="#000000", color_mode="fixed")

# Using the ImageEditor component to enable drawing on the image with limited colors
demo = gr.Interface(
    fn=main,
    inputs=[gr.ImageEditor(brush=black_brush), gr.Slider(0, 1, step=0.025, value=0.5, label="Image Strength"), gr.Textbox(label="Describe the object in as much detail as possible (include colors, materials, etc)")],
    outputs=["image", "image", "image", "image"]
)

demo.launch(share=False)