Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,663 Bytes
edb0494 6405936 edb0494 6405936 edb0494 a7d8817 d49f90c a7d8817 6405936 8ef457d c6d3715 4ab7724 88590fc c6d3715 aee2c4c c01d116 c6d3715 88590fc c01d116 aee2c4c c01d116 aee2c4c c01d116 aee2c4c c01d116 aee2c4c 4ab7724 c6d3715 8ef457d 88590fc 8ef457d 88590fc 8ef457d 88590fc 8ef457d 88590fc 8ef457d 88590fc 4ab7724 c6d3715 88590fc 4ab7724 88590fc 4ab7724 a7d8817 8ef457d c6d3715 0aa4565 8b5755f 0aa4565 757ad8d 0aa4565 757ad8d 8b5755f c6d3715 4ab7724 c6d3715 88590fc a7d8817 6405936 8ef457d 4ab7724 6405936 4ab7724 6405936 4ab7724 6405936 a7d8817 6405936 a7d8817 15a8627 8ef457d aeb7d74 8ef457d 5bc9409 4b78a6c c6d3715 5bc9409 4b78a6c 5bc9409 c6d3715 aee2c4c c6d3715 5bc9409 aeb7d74 6405936 fb5d273 aee2c4c fb5d273 6405936 aee2c4c 0328377 97567b1 40a5fd5 97567b1 9cdaf5d 4a91cdc 6405936 97567b1 976671e 8ef457d 976671e 8ef457d 4ab7724 40a5fd5 8ef457d aee2c4c 8ef457d 40a5fd5 8ef457d 4ab7724 5bc9409 8ef457d 5bc9409 c6d3715 5bc9409 8ef457d 5bc9409 c6d3715 5bc9409 8ef457d 5bc9409 d03bc23 5bc9409 c6d3715 8ef457d c6d3715 8ef457d 5bc9409 c6d3715 aee2c4c c01d116 aee2c4c c01d116 c6d3715 c01d116 aee2c4c c6d3715 8ef457d c837d9c 4ab7724 8ef457d c837d9c 8ef457d c837d9c 4ab7724 c6d3715 976671e 8ef457d 2278a79 c6d3715 2278a79 0328377 8ef457d 97567b1 8ef457d 5bc9409 8ef457d aeb7d74 8ef457d 5bc9409 8ef457d fb5d273 aee2c4c fb5d273 aeb7d74 aee2c4c c01d116 aee2c4c aeb7d74 0328377 6405936 0328377 976671e c6d3715 6405936 0328377 8ef457d 6405936 0328377 4ab7724 0328377 4ab7724 c6d3715 4ab7724 0328377 8ef457d 4ab7724 6405936 c6d3715 8ef457d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
else: # Custom
resize_percentage = custom_resize_percentage
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
# Draw the mask
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Create a preview image showing the mask
preview = background.copy().convert('RGBA')
# Create a semi-transparent red overlay
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
# Convert black pixels in the mask to semi-transparent red
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
red_mask.paste(red_overlay, (0, 0), mask)
# Overlay the red mask on the background
preview = Image.alpha_composite(preview, red_mask)
return preview
@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
if not can_expand(background.width, background.height, width, height, alignment):
alignment = "Middle"
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
final_prompt = f"{prompt_input} , high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
num_inference_steps=num_inference_steps
):
yield cnet_image, image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), mask)
yield background, cnet_image
def clear_result():
"""Clears the result ImageSlider."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update()
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update()
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update()
elif target_ratio == "Custom":
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
history.insert(0, new_image)
return history
css = """
.gradio-container {
width: 1200px !important;
}
"""
title = """<h1 align="center">Diffusers Image Outpaint</h1>
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<p style="display: flex;gap: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
</a> to skip the queue and enjoy faster inference on the GPU of your choice
</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)")
with gr.Column(scale=1):
run_button = gr.Button("Generate")
with gr.Row():
target_ratio = gr.Radio(
label="Expected Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Alignment"
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Target Width",
minimum=720,
maximum=1536,
step=8,
value=720, # Set a default value
)
height_slider = gr.Slider(
label="Target Height",
minimum=720,
maximum=1536,
step=8,
value=1280, # Set a default value
)
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=10,
step=1
)
with gr.Row():
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
with gr.Row():
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image",
choices=["Full", "50%", "33%", "25%", "Custom"],
value="Full"
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum=1,
maximum=100,
step=1,
value=50,
visible=False
)
with gr.Column():
preview_button = gr.Button("Preview alignment and mask")
gr.Examples(
examples=[
["./examples/example_1.webp", 1280, 720, "Middle"],
["./examples/example_2.jpg", 1440, 810, "Left"],
["./examples/example_3.jpg", 1024, 1024, "Top"],
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
],
inputs=[input_image, width_slider, height_slider, alignment_dropdown],
)
with gr.Column():
result = ImageSlider(
interactive=False,
label="Generated Image",
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
preview_image = gr.Image(label="Preview")
def use_output_as_input(output_image):
"""Sets the generated output as the new input image."""
return gr.update(value=output_image[1])
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result],
outputs=[input_image]
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
run_button.click( # Clear the result
fn=clear_result,
inputs=None,
outputs=result,
).then( # Generate the new image
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=result,
).then( # Update the history gallery
fn=lambda x, history: update_history(x[1], history),
inputs=[result, history_gallery],
outputs=history_gallery,
).then( # Show the "Use as Input Image" button
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
prompt_input.submit( # Clear the result
fn=clear_result,
inputs=None,
outputs=result,
).then( # Generate the new image
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=result,
).then( # Update the history gallery
fn=lambda x, history: update_history(x[1], history),
inputs=[result, history_gallery],
outputs=history_gallery,
).then( # Show the "Use as Input Image" button
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
preview_button.click(
fn=preview_image_and_mask,
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=preview_image,
queue=False
)
demo.queue(max_size=12).launch(share=False) |