Spaces:
Runtime error
Runtime error
File size: 1,614 Bytes
0a31f9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import streamlit as st
import torch
from transformers import AutoProcessor, VisionEncoderDecoderModel
import requests
from PIL import Image
import pandas as pd
st.write("Processing HCFA claims")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
processor = AutoProcessor.from_pretrained("Laskari-Naveen/HCFA_99")
model = VisionEncoderDecoderModel.from_pretrained("Laskari-Naveen/HCFA_99").to(device)
def run_prediction(image, model, processor):
pixel_values = processor(image, return_tensors="pt").pixel_values
task_prompt = "<s>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=2,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# process output
prediction = processor.batch_decode(outputs.sequences)[0]
prediction = processor.token2json(prediction)
return prediction, outputs
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
content = uploaded_file.read()
st.image(uploaded_file)
image = Image.open(uploaded_file).convert("RGB")
prediction, output = run_prediction(image, model, processor)
st.dataframe(prediction, width=600) |